Name of Faculty	:	Dr.TrilokRanjanMudgal, Assistant Professor
Discipline	:	Physics (common for all branches)
Semester	:	Ι
Subject	:	Engineering Physics and Physics Laboratory-I
Lesson Plan Durat	tion:	15 weeks (from August, 2018 to November, 2018)
\mathbf{W} 1 \mathbf{T} 1 $(\mathbf{T}$	D (* 1)	

Work Load (Lecture/Practical) per week (in hours): Lectures 08 hours, Practicals -08 hours

Week	Theory		Practicals		
	Lecture Day	Topic (Including Assignment/Test)	Practical Day	Topic	
	1	Division of Wave front Biprism, Lloyd mirror	1	DeSauty bridge	
1 st	2	Division of amplitude, Newton's rings,	1	DeSauty bridge	
	3	Michelsons interferometer, Applications	1	DeSauty bridge	
	4	Problems Solutions	1	DeSauty bridge	
	5	Fraunhoffe and Fresnel class diffraction	2	Unknown Capacity by Flashing&quench	
2^{nd}	6	Single slit, doule slit diffraction	2	Unknown Capacity by Flashing&quench	
	7	Plane Transmission Grating	2	Unknown Capacity by Flashing&quench	
	8	Problems Solutions	2	Unknown Capacity by Flashing&quench	
	9	Dispersive & resolving power of Grating	3	Freq. of AC mains by sonometer	
3 rd	10	Ploarised light, Brewste law, Malus law	3	Freq. of AC mains by sonometer	
	11	Polaroid,Optic axis,Double refraction	3	Freq. of AC mains by sonometer	
	12	Problems Solutions	3	Freq. of AC mains by sonometer	
	13	Nicol Prism, Quarter & Half wave plate	4	Height of an object using Sextant	
4 th	14	Biquartz&Laurents half shade polarimeter	4	Height of an object using Sextant	
	15	LASER, coherence, LASER Action	4	Height of an object using Sextant	
	16	Problems Solutions	4	Height of an object using Sextant	
	17	Spontaneous and stimulated emission	5	Figure of Merit of Galvanometer	
5th	18	Polpulation inversion, Characteristics of Laser	5	Figure of Merit of Galvanometer	
	19	He-Ne & semi conductor LASER, Holography	5	Figure of Merit of Galvanometer	
	20	Problems Solutions	5	Figure of Merit of Galvanometer	
	21	Einstein's A and B coefficient	6	Viva-Voce-1	
6th	22	Propagation of light in fibres,	6	Viva-Voce-1	
	23	Numerical Aperture	6	Viva-Voce-1	
	24	Problems Solutions	6	Viva-Voce-1	
7th		1 st 1	Minor Test		
	25	Attenuation, single mode, multi mode fibre	7	Specific rotation of sugar solution	
8th	26	Wave guide & Coaxial cables	7	Specific rotation of sugar solution	
	27	applications in optical communications	7	Specific rotation of sugar solution	
	28	Problems Solutions	7	Specific rotation of sugar solution	
	29	Simple Harmonic Motion, Harmonic Oscillator	8	λ by Newton's rings method	
9th	30	Resonance, Quality factor	8	λ by Newton's rings method	
	31	Electro Magnetic wave theory	8	λ by Newton's rings method	
	32	Problems Solutions	8	λ by Newton's rings method	
	33	Maxwell's equations	9	λ by Michelson Interferometer	
10th	34	Plane wave equations	9	λ by Michelson Interferometer	
	35	Poynting vector, continuity equation	9	λ by Michelson Interferometer	
	36	Problems Solutions	9	λ by Michelson Interferometer	
11th		2 nd 1	Minor Test		
	37	Einstein Theory of relativity,	10	Resolving power of Grating	
12th	38	Michelson Morley Experiment.	10	Resolving power of Grating	
	39	Lorentz transformations	10	Resolving power of Grating	
	40	Problems Solutions	10	Resolving power of Grating	
13th	41	Variation of mass with velocity	11	λ by fresnel'sBiprism	
	42	Mass Energy relation	11	λ by fresnel'sBiprism	
	43	Doppler shift	11	λ by fresnel'sBiprism	
	44	Problems Solutions	11	λ by fresnel's Biprism	
	45	longitudinal and transverse doppler shift	12	Viva-Voce-2	
14th	46	Neutron cross section, Fission, Fusion, reactor	12	Viva-Voce-2	
	47	Moderator, Interaction of radiation with matter	12	Viva-Voce-2	
	48	Problems Solutions	12	Viva-Voce-2	
	49	Reactor criticality, Ionisation and G.M.Counetr	13	Final Submission of Record	
15th	50	Scintillation & Solid state detector	13	Final Submission of Record	
	51	Cloud and Bubble chamber	13	Final Submission of Record	
	50	Problems Solutions	13	Final Submission of Record	

Name of Faculty :	Dr Wazir Singh Assistant Professor
Discipline :	B.Tech.
Branch :	CE. CSE+FT1 st Sem
Subject :	Chemistry (CHY-101-L)
Lesson Plan Duration:	15 weeks (from August, 2018 to November, 2018)

Work Load (Lecture/Practical) per week (in hours): Lectures 08 hours

Week	Theory		Lesson Plan covered		
	Lecture	Topic (Including Assignment/Test)	CE	CSE+FT	
	Day				
	1	UNIT-I Thermodynamics : Concept			
1^{st}		of Entropy			
	2	Concept of Entropy,			
		Problems and Solutions			
	3	Free Energy and Work Functions,			
		Free Energy Change			
	4	Chemical Potential, Gibb's Helmholtz			
		Equation, related numerical problems			
	5	Clausius-Clapeyron Equation related			
2^{nd}		numerical problems			
	6	Phase Equilibrium : Phase,			
		Component and degree of freedom			
	7	Gibb's Phase Rule, One Component			
		System : H ₂ O System			
	8	Problems and Solutions			
	9	Two Components Pb-Ag System			
3^{rd}	10	Two Components Zn-Mg System			
	11	UNIT-II Water and its Treatment :			
		Hardness of water, units of Hardness			
	12	Problems and Solutions			
4	13	Hardness determination (EDTA			
4^{tn}		method) related numerical problems			
	14	Alkalinity of Water and its			
		Determination, related numerical			
		problems			
	15	Methods of prevention of scale and			
		sludge formation			
	16	Problems and Solutions			
-th	17	Treatment of water for domestic use,			
5		Potable or drinking water, Quality			
	10	parameters of drinking water			
	18	Sedimentation, Coagulation			
	19	Filtration and disinfection			
	20	Problems and Solutions			
	01	Assignment-I			
~th	21	Water softening, Ion-Exchange			
6		process			
	22	Problems and Solutions			
	23	Desaination of brackish water by			
	24	Reverse Usinosis			
7 th	24		a4		
/	25	I Minor te	SU		
	25	UNIT-III CORROSION :			

8^{th}		Dry corrosion	
	26	Wet Corrosion	
	27	Electrochemical theory of Corrosion	
	28	Problems and Solutions	
	29	Types of wet corrosion : Galvanic	
9^{th}		Corrosion, Differential aeration	
		Corrosion	
	30	Factors affecting Corrosion	
	31	Corrosion preventive measure :	
		Cathodic protection, Protective	
		coatings	
	32	Problems and Solutions	
	33	Batteries : Introduction about	
10^{th}		batteries, Characteristics of batteries	
	34	Primary and secondary battery systems	
	35	Lead storage & Lithium batterys	
	36	Problems and Solutions	
.1	37	Lubricants : Introduction about	
11^{th}		lubricants	
	38	Classification of lubricants	
	39	Properties of lubricants	
	40	Problems and Solutions	
12^{th}	41	UNIT-IV Polymers : Monomers and	
		polymers, polymerization	
	42	Classification of polymers	
	43	Types of polymerization	
	44	Problems and Solutions Assignment-II	
41-	45	Effect of structure on the properties of	
13 th		polymers	
	46	Preparation, properties and application	
		of thermoplastic PVC, thermoset PF	
		and elastomer SBR	
	47	Analytical Methods: Principle and	
		application of Thermo Gravimetric	
		Analysis (TGA) and Differential	
	40	Thermal Analysis (DTA)	
1 4th	48	Problems and Solutions	
14	40	2 Minor test	
15 th	49	Spectral analysis : Electromagnetic	
15	50	Driveinle and applications of UV VIS	
	50	spectroscopy	
	51	Principle and applications of ID	
	51	spectroscopy	
	50	Drobloms and Solutions	
	52	1 TODICITIS and SOLUTIONS	1

Name of Faculty	:	Dr. Wazir Singh, Assistant Professor	
Discipline	:	B.Tech.	
Branch	:	CE, CSE+FT1 st Sem	
Subject	:	Chemistry Lab (CHY-101-P)	
Lesson Plan Dur	ation:	15 weeks (from August, 2018 to November, 2018)	
Work Load (Lecture/Practical) per week (in hours): Practical -08 hours			

Week		Lesson plan Practical	Lesson plan covered
	Practical Topic		Date and Branch
	Day		
	1	To prepare standard oxalic acid solution	
1^{st}		from crystalline oxalic acid.	
		Determination of dissolved oxygen (DO) in	
		the given water sample	
	1	To prepare standard oxalic acid solution	
		from crystalline oxalic acid.	
		Determination of dissolved oxygen (DO) in	
		the given water sample	
	1	To prepare standard oxalic acid solution	
		from crystalline oxalic acid.	
		Determination of dissolved oxygen (DO) in	
		the given water sample	
	1	To prepare standard oxalic acid solution	
		from crystalline oxalic acid.	
		Determination of dissolved oxygen (DO) in	
		the given water sample	
	2	Determination of viscosity of lubricant by	
2^{na}		Red Wood viscometer (No. 1 and No. 2)	
	2	Determination of viscosity of lubricant by	
	-	Red Wood viscometer (No. 1 and No. 2)	
	2	Determination of viscosity of lubricant by	
		Red Wood viscometer (No. 1 and No. 2)	
	2	Determination of viscosity of lubricant by	
		Red Wood viscometer (No. 1 and No. 2)	
ard	3	To determine flash point and fire point of	
3.4		an oil by Pensky – Marten's flash point	
		apparatus.	
	3	To determine flash point and fire point of	
		an oli by Pensky – Marten's flash point	
	2	apparatus.	
	3	10 determine flash point and fire point of an ail by Densly, Morton's flash point	
		an on by Pensky – Marten's hash point	
	2	apparatus.	
	3	an oil by Doneky Morton's flash point of	
		an on by relisky – Marten's flash point	
	1	To prepare Phenol-formaldehyde and Urea	
4^{th}		formaldehyde resin	
	4	To prepare Phenol-formaldehyde and Urea	
		formaldehyde resin.	
	4	To prepare Phenol-formaldehvde and Urea	
	-	formaldehyde resin.	
	4	To prepare Phenol-formaldehvde and Urea	
	-	formaldehyde resin.	

	5	Determination of strength of HCI solution	
5^{th}		by titrating it against NaOH solution	
		conductometrically.	
	5	Determination of strength of HCI solution	
		by titrating it against NaOH solution	
		conductometrically.	
	5	Determination of strength of HCI solution	
	-	by titrating it against NaOH solution	
		conductometrically.	
	5	Determination of strength of HCI solution	
		by titrating it against NaOH solution	
		conductometrically.	
	6	Viva-Voce-1	
6^{th}	6	Viva-Voce-1	
	6	Viva-Voce-1	
	6	Viva-Voce-1	
7^{th}		1 st Minor test	
	7	Determination of strength of strong acid by	
8^{th}		titrating it against weak base	
U		conductometrically.	
	7	Determination of strength of strong acid by	
		titrating it against weak base	
		conductometrically.	
	7	Determination of strength of strong acid by	
		titrating it against weak base	
		conductometrically.	
	7	Determination of strength of strong acid by	
		titrating it against weak base	
		conductometrically.	
	8	Determination of concentration of KMnO ₄	
9^{th}		solution spectrophotometrically.	
	8	Determination of concentration of KMnO ₄	
		solution spectrophotometrically	
	8	Determination of concentration of KMnO ₄	
		solution spectrophotometrically	
	8	Determination of concentration of KMnO ₄	
		solution spectrophotometrically	
	9	To determine the surface tension of given	
10^{th}		liquid by means of stalagmometer by drop	
		number method.	
	9	To determine the surface tension of given	
		liquid by means of stalagmometer by drop	
		number method.	
	9	To determine the surface tension of given	
		liquid by means of stalagmometer by drop	
		number method.	
	9	To determine the surface tension of given	
		liquid by means of stalagmometer by drop	
		number method.	
1	10	Determination of Ca ⁺⁺ and Mg ⁺⁺ hardness of	
11 th		water using EDTA solution.	
	10	Determination of Ca ⁺⁺ and Mg ⁺⁺ hardness of	
		water using EDTA solution.	
	10	Determination of Ca ⁺⁺ and Mg ⁺⁺ hardness of	
		water using EDTA solution.	

	10	Determination of Ca ⁺⁺ and Mg ⁺⁺ hardness of
		water using EDTA solution.
12 th	11	Determination of alkalinity of water sample.
	11	Determination of alkalinity of water sample.
	11	Determination of alkalinity of water sample.
	11	Determination of alkalinity of water sample.
	12	Viva-Voce-2
13 th	12	Viva-Voce-2
	12	Viva-Voce-2
	12	Viva-Voce-2
14 th		2 nd Minor test
	13	Final Submission of Record
15^{th}	13	Final Submission of Record
	13	Final Submission of Record
	13	Final Submission of Record

<u>Lesson Plan</u>

Name of Faculty	:	Gaurav Singh Sisodia	
Discipline	:	Mathematics	
Semester	:	Ι	
Subject	:	Maths-I (MAT-101-L)	
Lesson Plan Dura	ation:	15 weeks (from August, 2018 to November, 2018)	
Work Load (Lecture/Practical) per week (in hours): Lectures 05 hours.			

Week		Theory	
	Lecture	Topic (Including Assignment/Test)	
	Day		
	1	Taylor's series	
1^{st}	2	Maclaurin's series	
	3	Asymptotes Def., asymptotes parallel to coordinate axes	
	4	Oblique asymptotes	
	5	Asymptotes by Inspection method, Intersection of curve and its asymptotes	
	6	Asymptotes of Polar curves	
2^{nd}	7	Problems and solutions	
	8	Curvature, Radius and curvature for Intrinsic and Cartesian curves	
	9	Radius of curvature of Pedal and polar equations	
	10	Radius of curvature at origin. Newton's Method, Method of expansion	
	11	Centre of curvature, evolutes and involutes	
$3^{\rm rd}$	12	Problems and solutions	
	13	Functions of two or more variables. Partial derivatives and differentiability	
	14	Total differential and derivatives of composite functions and implicit functions	
	15	Problems and solutions	
	16	Higher order partial derivatives. Homogeneous functions. Euler's Theorem	
4^{th}	17	Taylor's series for functions of two variables	
	18	Jacobians	
	19	Problems and solutions	
	20	Maxima and minima of functions of two variables	
	21	Lagrange's method of undetermined multipliers	
5th	2.2	Differentiation under the integral sign	
Still	23	Problems and solutions	
	23	Applications of single integration to find volume of solids	
	25	Applications of single integration to find surface area of solids or revolution	
	25	Problems and Solutions	
6th	20	Double integral	
oth	27	Change of order of double integration	
	20	Double integral in polar coordinates	
	30	Problems and Solutions	
7 th		Ist Minor Test	
/	31	Applications of double integral to find area anglosed by plane curves	
8th	32	Applications of double integral to find volumes enclosed by plane curves	
otti	32	Triple integral	
	34	Change of variables	
	35	Problems and solutions	
	36	Reta function	
Qth	30	Properties of Reta function	
Jui	38	Gamma function	
	30	Properties of Gamma function	
	40	Relation between Beta and Gamma function	
	40	Problems and Solutions	
10th	41	Differentiation of vectors	
Totti	42	Scalar and vector point functions	
	43	Gradient of a scalar field	
	44	Distribution of a scalar field	
	45	Directional derivatives	
	40	Problems and Solutions	
11 th	18	Divergence of a vector field	
11	40	Physical interpretation of divergence	
	50	Curl of a vector field	
	51	Physical interpretation of curl	
12th	52	Properties of divergence and curl	
1201	53	Problems and solutions	
	54	Integration of vectors	
	55	Line integral	
13 th	56	Problems and Solutions	
15	57	Surface integral	
	58	Volume integral	
	50	Problems and Solutions	
	60	Green's theorem	
1/th	00	2 nd Minor Test	
1411	61	Applications of Green's theorem	
15th	62	Stoke's theorem	
1501	63	Applications of Stoke's theorem	
	6/	Gauss divergence theorem	
	65	Annlications of Gauss theorem	

Name of faculty	:	Dr. Meena Kumari
Discipline	:	Applied Sciences and Humanities
Semester	:	1st
Subject	:	Essentials of Communication-I
Lesson plan duration	:	15 weeks (from August 2018 to December 2018)

Work Load (Lectutre/Practical) per week (in hours): Lectures 03 hours.

Week	Theory				
	Lecture	Topic (Including Assignment/Test)			
	Day				
	1	Antonyms, Synonyms, Homophones, Homonyms			
1 st	2	Form and Function of words			
	3	Form and Function of words			
	4	Problem Solving			
2^{nd}	5	Sentence Structure			
	6	Verb Patterns and Usage			
	7	Phonetics: Symbols and Structure			
3 rd	8	Phonetics: Symbols and Structure			
	9	Phonetics: Symbols and Structure			
	10	Problem Solving			
4^{th}	11	Note Taking			
	12	Reviewing			
	13	Precis Writing, Summaring			
5th	14	Practice of Precis Writing, Summaring			
	15	Comprehention, Paraphrasing, Interpretation			
	16	Descriptive and Explanatory Writing			
6th	17	Descriptive and Explanatory Writing			
	18	Problem Solving			
7 th		Ist Minor Test			
	19	Analytical and Argumentative Writing			
8th	20	Debate			
	21	Group Discussion			
	22	Group Discussion			
9th	23	Presentation			
	24	The Year 2050			
	25	The Year 2050			
10th	26	The Year 2050			
	27	Question Answers			
	28	The Mushroom of Death			
11 th	29	The Mushroom of Death			
	30	The Mushroom of Death			
12 th	31	Ouestion Answers			
	32	The Discovery			
	33	The Discovery			
13 th	34	The Discovery			
	35	Ouestion Answers			
	36	Problem Solving			
14 th		2 nd Minor Test			
	37	Remedial Teaching			
15 th	38	Remedial Teaching			
	39	Remedial Teaching			
	57	nemeulai reaching			

Name of faculty	:	Dr. Meena Kumari
Discipline	:	Applied Sciences and Humanities
Semester	:	1 st
Subject	:	Essentials of Communication-I (Lab).
Lesson plan duration	:	15 weeks (from August 2018 to December 2018)
Work Load (Practical) per w	eek (in ho	ours): Lab. 01hour with one group of a class

Week		Theory
	Lab. Day	Topic (Including Assignment/Test)
1	1	Introduction to Phonemic Alphabet
2	2	Introduction to Phonemic Alphabet
3	3	Practice of Correct Pronunciation of English Words
4	4	Transcription of English Words
5	5	Description and Identification of Consonants and Vowel Sounds
6	6	Viva Voce I
7	7	Minor Test I
8	8	Tenses
9	9	Change the Voice
10	10	Articles
11	11	Capitalisation
12	12	Grammar Rules
13	13	Viva Voce II
14	14	Minor Test II
15	15	Revision and Final Submission of Lab. Record

Name of Faculty	:	Dr. Shyam Sunder, Assistant Professor
Discipline	:	
Semester	:	1 st Sem
Subject	:	Physics-I (PHY-101L)
Lesson Plan Duration:		15 weeks (from August, 2018 to November, 2018)
Work Load (Lecture	e/Practical) per week (in hours): Lectures 08 hours, Practicals -08 hours

Week

Theory Lecture **Topic (Including Assignment/Test)** Day 1 Division of Wave front, Bi-prism, 1 st Division of amplitude, Newton's rings, 2 3 Michelson's interferometer and Lloyd mirror, Applications **Problems Solutions** 4 Fraunhoffer and Fresnel class diffraction 5 2nd Single slit, double slit diffraction 6 N-Slit and Plane Transmission diffraction grating Grating 7 **Problems Solutions** 8 Dispersive & resolving power of Grating 9 3rd Polarised light, Brewster law, Malus law 10 Polaroid, Optic axis, Double refraction 11 **Problems Solutions** 12 13 Nicol Prism, Quarter & Half wave plate ∆th Biquartz & Laurent's half shade polarimeter 14 15 LASER, coherence, LASER Action **Problems Solutions** 16 Spontaneous and stimulated emission 17 Population inversion, Characteristics of Laser 5th 18 19 He-Ne & semi conductor LASER, Holography 20 **Problems Solutions** 21 Einstein's A and B coefficient Propagation of light in fibres, 6th 22 Numerical Aperture 23 **Problems Solutions** 24 7th 25 Attenuation, single mode, multi mode fibre Wave guide & Coaxial cables 8th 26 applications in optical communications 27 **Problems Solutions** 28 Simple Harmonic Motion, Harmonic Oscillator 29 9th 30 Resonance, Quality factor Electro Magnetic wave theory 31 32 **Problems Solutions** Maxwell's equations 33 10th 34 Plane wave equations 35 Poynting vector, continuity equation 36 **Problems Solutions** 11th 37 Einstein Theory of relativity, 12th 38 Michelson Morley Experiment. 39 Lorentz transformations

	40	Problems Solutions
13th 41 Variation of mass with ve		Variation of mass with velocity
	42	Mass Energy relation
	43	Doppler shift
	44	Problems Solutions
	45	longitudinal and transverse Doppler shift
14th	46	Neutron cross section, Fission, Fusion, reactor
	47	Moderator, Interaction of radiation with matter
	48	Problems Solutions
	49	Reactor criticality, Ionisation and G. M. Counter
15th	50	Scintillation & Solid state detector
	51	Cloud and Bubble chamber
	52	Problems Solutions

Name of Faculty	:	Dr. Shyam Sunder, Assistant Professor
Discipline	:	
Semester	:	1 st Sem
Subject	:	Physics Lab-I (PHY-101P)
Lesson Plan Duration:		15 weeks (from August, 2018 to November, 2018)
Work Load (Lectur	re/Practic	al) per week (in hours): Lectures 08 hours, Practicals -08 hours

Practicals			
Practical Day	Topic		
1	De-Sauty bridge		
2	Unknown Capacity by Flashing & quench		
2	Unknown Capacity by Flashing & guench		
2	Unknown Capacity by Flashing & quench		
2	Unknown Capacity by Flashing & quench		
3	Freq. of AC mains by sonometer		
3	Freq. of AC mains by sonometer		
3	Freq. of AC mains by sonometer		
3	Freq. of AC mains by sonometer		
4	Height of an object using Sextant		
4	Height of an object using Sextant		
4	Height of an object using Sextant		
4	Height of an object using Sextant		
5	Figure of Merit of Galvanometer		
5	Figure of Merit of Galvanometer		
5	Figure of Merit of Galvanometer		
5	Figure of Merit of Galvanometer		
6	Viva-Voce-1		
	1 st Minor Test		
7	Specific rotation of sugar solution		
7	Specific rotation of sugar solution		
7	Specific rotation of sugar solution		
7	Specific rotation of sugar solution		
8	λ by Newton's rings method		
8	λ by Newton's rings method		
8	λ by Newton's rings method		
8	λ by Newton's rings method		
9	λ by Michelson Interferometer		
9	λ by Michelson Interferometer		
9	λ by Michelson Interferometer		
9	λ by Michelson Interferometer		
	2 nd Minor Test		
10	Resolving power of Grating		
10	Resolving power of Grating		
10	Resolving power of Grating		
10	Resolving power of Grating		

11	λ by fresnel'sBiprism
11	λ by fresnel'sBiprism
11	λ by fresnel'sBiprism
11	λ by fresnel'sBiprism
12	Viva-Voce-2
13	Final Submission of Record
12 12 12 13 13 13 13 13	Viva-Voce-2 Viva-Voce-2 Viva-Voce-2 Final Submission of Record Final Submission of Record Final Submission of Record Final Submission of Record