Na	_	Q -1.11 A
Name of Faculty	:	Sanii Arora
Discipline	:	BTech ECE
Semester	:	III
Subject	:	Digital Electronics (ECE-209-L)
Lesson Plan Dura	tion:	15 weeks per week (in hours): Lectures 04 hours.

Week	Theory				
	Lecture	Topic (Including Assignment/Test)			
at	1	Digital signal, Error detection and correction codes.			
1 st	2	logic gates: AND, OR, NOT, NAND			
	3	NOR, EX-OR, EX-NOR			
	4	Boolean algebra			
and	5	Review of Number systems			
2"	6	Binary codes: BCD, Excess-3, Gray			
	7	EBCDIC, ASCII			
	8	Error detection and correction codes			
2 rd	9	Design using gates			
5	10	Karnaugh map			
	11	Problems on K map			
	12	Problems and Solutions on K map			
4^{th}	13	Circuit designsing gates adder subtractor comparator			
	15	BCD to seven segment code converters			
	16	MUX and DEMUX :use as logic elements			
	17	Decoders. Encoder			
5th	18	Adders / Subtractors			
	19	BCD arithmetic circuits			
	20	Flip Flops : S-R, J-K			
	21	T, D ff			
6th	22	master-slave, edge triggered, flip flop conversion			
	23	shift registers, bidirectional shift registers			
	24	sequence generators			
7 th		Ist Minor Test			
0.1	25	Ring Counters			
8th	26	Johnson Counter			
	27	Design of Synchronous and Asynchronous sequential circuits			
	28	Assignment questions			
Oth	29	Finite state Machines-Timing Diagram, Moorey vs Mealy			
901	30	FSM design procedure, state diagram			
	31	State transition table, state minimization			
	32	State encoding, next state logic minimization			
10th	33	Problems and Solutions			
Toth	34	Fibblens and Solutions			
	35	switching mode operation of p-n junction			
	30	Bipolar logic families: BTL_DCTL			
	38	HTI TTI FCI MOS			
11^{th}	39	CMOS logic families			
	40				
	41	Interfacing of CMOS and TTL families.			
12th	42	Sample and hold circuit			
	43	weighted resistor and R -2 R ladder D/A Converter			
	44	specifications for D/A converters. A/D converters : Quantization, parallel -			
		comparator			
13 th	45	successive approximation type			
	46	counting type, dual-slope ADC, specifications of ADCs			
	47	ROM			
	48	PLA, PAL			
14th		2 ⁴⁴⁴ Minor Test			
	49	FPGA			
15th	50	Assignment Evaluation			
	51	CPLDs			
	52	Implementation of Combinational circuit using ROM, PLA, PAL			

Name of Faculty	:	Vikram Singh Bhambhu, Guest Lecturer(ECE)	
Discipline	:	Electronics & Communication Engg.	
Semester	:	3 rd	
Subject	:	Analog Electronics	
Lesson Plan Duration:		15 weeks (from August, 2018 to December, 2018)	
Work Load (Lectutre/Practical) per week (in hours): Lectures 04 hours			
Discipline Semester Subject Lesson Plan Durat Work Load (Lectutr	ion: re/Practical) per	Electronics & Communication Engg. 3 rd Analog Electronics 15 weeks (from August, 2018 to December, 2018) week (in hours): Lectures 04 hours	

Week	Theory		
	Lecture	Topic	
	Day		
st.	1	Introduction to Analog electronics	
15	2	P-N junction theory	
	3	P-N junction V-I Characteristics	
	4	P-N junction as a rectifier	
and	5	Switching characteristics of Diode	
2	6	Diode as a circuit element	
		The load-line concept	
	8	Half-wave and full wave rectifiers	
3rd	9	Chipping circuits	
5	10	Eilten singuite	
	11	Part to mark detector	
	12	Veltage multiplier eizenite	
4^{th}	13	Voltage Inultiplier Clicuits Bipeler junction transistor operation	
•	14	Bipolar junction transistor characteristics	
	15	Elers-moll model of transistor	
	17	Hybrid model	
5^{th}	17		
	18	H-parameters (CE, CB, CC configurations)	
	19	Analysis of a transistor amplifier circuits using h-parameters	
	20	Emitter follower	
	21	Miller's Theorem	
6 th	22	Frequency response of R-C coupled amplifier	
	23	Operating point	
	24	Bias stability	
7 th			
		Minor Test 1	
	25	Collector to have him	
8^{th}	25	Solf bios	
-	20	Fmitter bias	
	28	Bias compensation	
	29	Sensistor compensation	
9^{th}	30	Thermistor compensation	
	31	Hybrid P model	
	32	CE short circuit current gain	
d	33	Frequency response	
10 ^m	34	Alpha	
	35	Cutoff frequency	
	36	Gain bandwidth product	
1.1 th	37	Emitter follower at high frequencies.	
11	38	Junction field effect transistor	
	39	Pinch off voltage	
th	40	volt-ampere characteristics	
12 ^m	41	Small I signal model	
	42	MOSFET Enhancement mode	
	43	MOSFET Depletion mode	
	44	V-MOSFE1	
13^{th}	45	Source follower	
	47	Biasing of FFT	
	48	Applications of FET as a voltage variable resistor (V V R).	
14^{th}	1		
		Minor Test 2	
	40	Social and about voltage regulators	
1.5 th	49	Power supply parameters	
	51	Three terminal IC regulators	
	52	SMPS	

Vikram Singh Bhambhu

Guest Lecturer (ECE)

Lesson Plan

Name of FacultyPoonamDisciplineBTech CSESemesterIIISubjectDigital Electronics (EE-204-E)Lesson Plan Duration:15 weeksWork Load (Lecture/Practical) per week (in hours): Lectures 04 hours.

Week	Theory			
	Lecture Day	Topic (Including Assignment/Test)		
	1	Digital signal, EBCDIC, ASCII, Error detection and correction codes.		
1^{st}	2	logic gates: AND, OR, NOT, NAND		
	3	NOR, EX-OR, EX-NOR		
	4	Boolean algebra		
	5	Review of Number systems		
2^{nd}	6	Binary codes: BCD, Excess-3, Gray		
	7	EBCDIC, ASCII		
	8	Error detection and correction codes		
	9	Design using gates		
3 rd	10	Karnaugh map		
	11	Problems on K map		
	12	Problems and Solutions on K map		
44	13	Quine Mcluskey methods of simplification		
4 th	14	Problems on Quine Mcluskey methods of simplification		
	15	Discussion on K map and Quine Mcluskey methods of		
		simplification		
	16	Multiplexers		
	17	Demultiplexers		
5th	18	MUX and DEMUX : use as logic elements		
	19	Decoders		
	20	Adders / Subtractors		
	21	BCD arithmetic circuits		
6th	22	Encoder		
	23	Decoders / Drivers for display devices		
	24	Problems and Solutions		
7 th		Ist Minor Test		
0.1	25	Flip Flops : S-R, J-K		
8th	26	T, D ff		
	27	master-slave, edge triggered		
	28	shift registers,		
	29	Assignment questions		
9th	30	sequence generators		
	31	Counters		
	32	Asynchronous and Synchronous Ring counters		
	33	Johnson Counter		
10th	34	Design of Synchronous and Asynchronous sequential circuits		
	35	Switching mode operation of p-n junction		

	36	bipolar and MOS. devices
	37	Bipolar logic families:RTL, DTL, DCTL
1 1 th	38	HTL, TTL, ECL, MOS
11	39	CMOS logic families
	40	Tristate logic
	41	Interfacing of CMOS and TTL families.
12th	42	Sample and hold circuit
	43	weighted resistor and R -2 R ladder D/A Converter
	44	specifications for D/A converters. A/D converters : Quantization,
		parallel - comparator
13 th	45	successive approximation type
	46	counting type, dual-slope ADC, specifications of ADCs
	47	ROM
	48	PLA, PAL
		2 nd Minor Test
14th		
15th	49	FPGA
	50	Assignment Evaluation
51 CPLDs		CPLDs
	52	Problems and Solutions

Week		Theory
	Lecture	Topic (Including Assignment/Test)
	Day	
		Unit1
	1	Introduction & Application of instrument system
1^{st}	2	Functional Element of a Measurement System
	3	Classification of instruments, Standard & Calibration
	4	Static & Dynamic Characteristics of Inst., Precision & Accuracy.
2^{nd}	5	Resolution, Threshold, Sensitivity, Linearity
	6	Hysteresis, Dead Band, backlash, Drift
	7	Formulation of Differential Equation
3^{rd}	8	Zero, First and Second Order System
	9	Response of First & Second Order System to Step, Ramp Fn.
	10	Response of First & Second Order System to Impulse and Harmonic
4^{th}	11	Unit-II Block Diagram of Oscilloscope &Study of Various stages
	12	High Freq CRO & Sampling & Storage Oscilloscope
	13	Measurement of Phase & Freq.
5^{th}	14	DC & AC voltage Measurement
	15	DC & AC current Measurement & Assignment 1
	16	Multi-meter, Ohmmeter & Bolometer
6^{th}	17	Calorimeter & Power meter
	18	Introduction to Digital Meter
7^{th}		1 st Minor Test
		Unit 3
	19	Block Diagram of Pulse Generator
8^{th}	20	Signal & Function Generator
	21	Wave analyser
	22	Distortion & Specturm analyser
9 th	23	Harmonic analyser
	24	Power Analyser
	25	Study of Decade Counting Assembly
10^{th}	26	Freq. & Period Measurement
	27	Universal Counter & Introduction to Digital Meter
		Unit 4
	28	Classification of Transducer

11 th	29	RLC & Photocell Transducer		
	30	Measurement of Displacement & Velocity		
12^{th}	31	Measurement of Acceleration		
	32	Measurement of Strain & Pressure		
	33	Measurement of Liquid Level & Temp.		
	34	DC signal Conditioning System		
13 th	35	AC signal Conditioning System		
	36	Data Acquisition & Conversion system		
14th		2 nd Minor Test		
	37	Characteristics of Modern digital Acquisition System Amplifier		
15 th		Characteristics		
	38	Filter & Assignment 2		
	39	Settling time & Amplifier Characteristics		

Gourav Sharma Guest Faculty E.C.E.Department

Name of Faculty	:	Gourav Sharma, Guest Faculty
Discipline	:	Electronics & Communication Engg.
Semester	:	7th
Subject	:	Optical Communication (EE-405E)
Lesson Plan Dura	tion:	15 weeks (from August, 2018 to November, 2018)
Work Load (Lect	urer) :	Per week (in hours): Lectures 04 hours.
Work Load (Lect	urer) :	Per week (in hours): Lectures 04 hours.

Week	Theory		
	Lecture	Day	Topic (Including Assignment/Test)
	1		Electromagnetic spectrum used for optical communication
1^{st}	2		Block diagram of optical communication system
	3		Basics of transmission of light rays
	4		Advantages of optical fiber communication
_	5		Optical fibers structures and their types
2^{nd}	6		Attenuation
	7		Scattering
	8		Absorption
	9		Fiber Bend Loss
3^{rd}	10		Dispersion
	11		Fiber Coupler
	12		Connector
	13		Problem & Solution of 1 st Unit
4^{th}	14		Problem & Solution of 2 nd Unit
	15		Light emitting diode
	16		Recombination processes
17			The spectrum of recombination radiation
5^{th}	18		LED characteristics
	19		Internal quantum efficiency
	20		External quantum efficiency
	21		LED structure
6^{th}	22		Lens coupling to fiber
	23		Behavior at high frequencies.
	24		Problem & Solution of 3 rd Unit
7th	1 st Minor Test		
	25	Basic	principles of laser action in semi -conductors
8 th	26	optica	al gain,
	27	lasing	g threshold
	28	Assi	gnment 1
	29	laser	structures and characteristics
9 th	30	laser	to fiber coupling
	31	Comp	parison with LED source.
	32 Prob		ems and Solution of 4 th Unit

	33	Principles of optical detection
10^{th}	34	Quantum efficiency, Responsivity
	35	General principles of PIN photodetector
	36	Intrinsic absorption
	37	Materials and designs for PIN photodiodes, ,
11 th	38	Impulse and frequency response of PIN photodiodes
	39	Noise in PIN Photodiodes
	40	Problems and Solution
12 th	41	multiplication process
	42	APD Design,
	43	APD bandwidth,
	44	APD noise
	45	Assignment-II
13 th	46	Revision & Problem Solving of 1 st Unit
	47	Revision & Problem Solving of 2 nd Unit
	48	Revision & Problem Solving of 2 nd Unit
14th	2 nd Mino	r Test
	49	Revision & Problem Solving of 3 rd Unit
15^{th}	50	Revision & Problem Solving of 4 th Unit
	51	Revision & Problem Solving of 5 th Unit
	52	Revision & Problem Solving of 5 th Unit

Name of Faculty	:	Rupinder Kaur, Assistant Professor	
Discipline	:	ECE	
Semester	:	IIIrd	
Subject	:	SIGNALS AND SYSTEMS (ECE-203-L)	
Lesson Plan Duratio	n:	15 weeks (From July 2018 to Dec. 2018)	
Work Load (Lectutre/Practical) per week (in hours): Lectures: 04			

Week	Theory		
	Lecture	Topic (Including Assignment/Test)	
	Day		
	1	Signal Definition	
1^{st}	2	Classification of Signals	
	3	Basic/Singularity	
	4	Continuous and Discrete time signals	
	5	Basic operations of signals	
2^{nd}	6	Time Shifting	
	7	Time Reversel	
	8	Time Scaling	
_	9	Signal Representation in terms of singular functions	
3^{rd}	10	Correlation of Signals	
	11	Correlation Properties	
	12	Representation of a continuous time signal by samples	
	13	The Sampling Theorem	
4 th	14	Reconstruction of signal from its samples	
	15	Aliasing	
	16	Introduction to Systems	
	17	Classification of Systems	
5th	18	Linear and Non linear Systems	
	19	Static and Dynamic Systems	
	20	Casual & Non-casual Systems	
	21	Invertible & Non invertible Systems	
6th	22	Stable & Unstable Systems	
	23	Time variant & Time invariant Systems	
	24	Assignment I	
7th		Minor Test II	
	25	Introduction to Linear Time invariant Systems	
8th	26	Properties of LTI	
	27	Convulation Sum/Integral and its Properties	
	28	Representation of LTI systems using Differential equations	
	29	Representation of LTI systems using Difference equations	
9th	30	Introduction to Frequency Domain Representation	
	31	Fourier Series Representation of Periodic Signals	

	32	Convergence of Fourier Transform	
	33	Properties of Fourier Series	
10th	34	Fourier Transform for Periodic Signals	
	35	Fourier Transform for Aperiodic Signals	
	36	Convergence of Fourier Transform	
	37	Properties of Fourier Transform	
11th	38	Applications of Fourier Transform	
	39	Introduction to Discrete -Time Fourier Transform	
	40	Fourier Transform representation for Discrete - Time Aperiodic	
		Signals	
12th	41	Fourier Transform representation for Discrete - Time Periodic	
		Signals	
	42	Properties of Discrete -Time Fourier Transform	
	43	Basic Fourier Transform Pairs	
	44	Introduction to Z - Transform	
	45	Region of Convergence for Z - Transform	
13th	46	Assignment II	
	47	Z – Transform Properties	
	48	Problems and Solutions	
14th	Minor Test II		
	49	Analysis of LTI Systems using Z – Transform	
15th	50	Applications of Z - Transform	
	51	Inverse Z – Transform	
	52	Introduction to Hilbert Transform	

Name of Faculty :	SAHIL ARORA, Assistant Professor (ECE)
Discipline	: ECE 3RD SEM
Subject :	DIGITAL ELECTRONICS (ECE-209-L)
Lesson Plan Duration:	15 weeks (From July 2018 to Dec. 2018) 4 LECT PER WEEK.

Week	Theory	
	Lecture	Topic (Including Assignment/Test)
	1	Digital signal, Error detection and correction codes.
1 st	2	logic gates: AND, OR, NOT, NAND
	3	NOR, EX-OR, EX-NOR
	4	Boolean algebra
	5	Review of Number systems
2 nd	6	Binary codes: BCD, Excess-3, Gray
	7	EBCDIC, ASCII
	8	Error detection and correction codes
	9	Design using gates
3 rd	10	Karnaugh map
	11	Problems on K map
	12	Problems and Solutions on K map
	13	Quine Mcluskey methods of simplification
4 th	14	Circuit desig using gates, adder, subtractor, comparator
	15	BCD to seven segmant , code converter\
	16	MUX and DEMUX :use as logic elements
	17	Decoders, Encoder
5th	18	Adders / Subtractors
	19	BCD arithmetic circuits

	20	Flip Flops : S-R, J-K
	21	T, D ff
6th	22	master-slave, edge triggered, flip flop conversion
	23	shift registers, bidirectional shift registers
	24	sequence generators
7 th		Ist Minor Test
	25	Ring Counters
8th	26	Johnson Counter
	27	Design of Synchronous and Asynchronous sequential circuits
	28	Assignment questions
	29	Finite state Machines-Timing Diagram, Mooreyvs Mealy
9th	30	FSM design procedure,state diagram
	31	State transition table, state minimization
	32	State encoding, next state logic minimization
	33	Implement the design
10th	34	Problems and Solutions
	35	Switching mode operation of p-n junction
	36	bipolar and MOS. devices
	37	Bipolar logic families:RTL, DTL, DCTL
	38	HTL, TTL, ECL, MOS
11 th	39	CMOS logic families
	40	Tristate logic
	41	Interfacing of CMOS and TTL families.
12th	42	Sample and hold circuit
	43	weighted resistor and R -2 R ladder D/A Converter
	44	specifications for D/A converters. A/D converters : Quantization, parallel - comparator
13 th	45	successive approximation type\
	46	counting type, dual-slope ADC, specifications of ADCs
	47	ROM
	48	PLA, PAL
14th		2 nd Minor Test
	49	FPGA
15th	50	Assignment Evaluation
	51	CPLDs
	52	Implementation of Combinational circuit using ROM,PLA,PAL

Name of Faculty	:	RupinderKaur, Assistant Professor (ECE)
Discipline		: ECE 3 RD SEM
Subject	:	SIGNALS AND SYSTEMS (ECE-203-L)
Lesson Plan Duration:		15 weeks (From July 2018 to Dec. 2018) 4 LECT PER WEEK.

E

Week	Theory	
	Lecture	Topic (Including Assignment/Test)
	Day	
	1	Signal Definition
1 st	2	Classification of Signals
	3	Basic/Singularity
	4	Continuous and Discrete time signals
	5	Basic operations of signals
2""	6	Time Shifting
	7	Time Reversel
	8	Time Scaling
	9	Signal Representaion in terms of singular functions
3 ^{ra}	10	Correlation of Signals

	11	Correlation Propertie
	12	Representation of a continuous time signal by samples
	13	The Sampling Theorem
4 th	14	Reconstruction of signal from its samples
	15	Aliasing
	16	Introduction to Systems
	17	Classification of Systems
5th	18	Linear and Non linear Systems
	19	Static and Dynamic Systems
	20	Casual & Non-casual Systems
	21	Invertible & Non invertible Systems
6th	22	Stable & Unstable Systems
	23	Time variant & Time invariant Systems
	24	Assignment I
7th		Minor Test II
	25	Introduction to Linear Time invariant Systems
8th	26	Properties of LTI
	27	Convulation Sum/Integral and its Properties
	28	Representation of LTI systems using Differential equations
	29	Representation of LTI systems using Difference equations
9th	30	Introduction to Frequency Domain Representaion
	31	Fourier Series Representation of Periodic Signals
	32	Convergence of Fourier Transform
	33	Properties of Fourier Series
10th	34	Fourier Transform for Periodic Signals
	35	Fourier Transform for Aperiodic Signals
	36	Convergence of Fourier Transform
	37	Properties of Fourier Transform
11th	38	Applications of Fourier Transform
	39	Introduction to Discrete -Time Fourier Transform
	40	Fourier Transform representation for Discrete - Time Aperiodic Signals
12th	41	Fourier Transform representation for Discrete - Time Periodic Signals
	42	Properties of Discrete -Time Fourier Transform
	43	Basic Fourier Transform Pairs
	44	Introduction to Z - Transform
	45	Region of Convergence for Z - Transform
13th	46	Assignment II
	47	Z – Transform Properties
	48	Problems and Solutions
14th		Minor Test II
<u> </u>	49	Analysis of LTI Systems using Z – Transform
15th	50	Applications of Z - Transform

51	Inverse 7 – Transform
52	Introduction to Hilbert Transform
52	

LESSON PLAN

Name of Faculty : Poonam

Discipline :BTech ECE 3RD SEM

Subject : Network analysis and synthesis (ECE-207-L)

Lesson Plan Duration :15 weeksWork Load (Lecture/Practical) per week (in hours): Lectures 04 hours

Week	Theory	
	Lecture Day	Topic (Including Assignment/Test)

	1	Introduction to laplace transformation
1 st	2	Properties of Laplace transformation
	3	Laplace transform of special signal waveforms
	4	Inverse laplace transform
	5	Use of laplace transform in solving electrical networks
2 nd	6	Problems and solution on laplace transform
	7	Initial conditions of resistive, inductive and capacitive elements
	8	Time domain analysis of simple linear circuits
	9	Transient and steady state response of RC,RL,RLC Circuit to step signal using laplace transform
3 ^{ra}	10	Transient and steady state response of RC,RL,RLC Circuit to ramp signal using laplace transform
	11	Transient and steady state response of RC,RL,RLC Circuit to impulse signal using laplace transform
	12	Transient and steady state response of RC,RL,RLC Circuit to sinusoidal signal using laplace transform
	13	Problems and solutions
4 th	14	Terminal pairs or Ports
	15	Network functions for one-port and two-port networks
	16	poles and zeros of Network functions
5th	17	Demultiplexers Restrictions on pole and zero Locations for driving point functions and transfer functions
500	18	Time domain behavior from the pole-zero plot.
	19	Problems and solution on Time domain behavior from the pole-zero plot.
	20	Relationship of two-port variables
	21	short-circuit Admittance parameters, open circuit impedance, parameters
6th	22	Transmission parameters, hybrid parameters
	23	Relationships between parameter sets
	24	Inter-connection of two port networks.
7 th		Ist Minor Test
	25	Concept of network graph
8th	26	Terminology used in network graph
	27	Relationship between twigs and links
		Properties of tree in a graph
	20	Assignment questions
9th	30	Formation of incidence matrix number of trees in a graph
	31	Cut set matrix
	32	
	22	Formulation of network equilibrium equation
10+6	2/	notwork analysis using grant theory
1001	25	Interview dialysis using graph liteory
	35	
	36	bipolar and MOS. devices
	37	Bipolar logic families:RTL, DTL, DCTL
	38	Passive filter:HPF

11 th	39	LPF
	40	BPF
	41	BSF
12th	42	Introduction to m derived filters
	43	Introduction to active filters
	44	Concept and significance of positive real functions
13 th	45	Concept of network synthesis
	46	Driving point immittance function structure of RC Network
	47	Driving point immittance function structure of RL Network
	48	Foster form of RCnetwork
14th		2 nd Minor Test
	49	Foster form of RCnetwork
15th	50	Assignment Evaluation
	51	CAUER form of RCnetwork
	52	CAUER form of RCnetwork

Name of Faculty	:	Ms.Poonam, Assistant Professor of ECE
Discipline		:ECE 3 RD SEM
Subject	:	Network analysis and synthesis lab(ECE-207P)
Lesson Plan Durat	ion	:15 weeks (from august-2018 to 14ecember-

:15 weeks (from august-2018 to 14ecember-2018)Practical-02 hours

Week	Practical (Gr	Practical (Group-I/ II)			
	Practical	Topics/ Programs			
	Day				
1 st	1	Transient Response of RC circuit			
2 nd	2	Transient Response of RI circuit			
3 rd	3	To find the resonance frequency, Bandwidth of RLC series circuit			
4 th	4	To calculate and verify z parameters of two port network			
5 th	5	To calculate and verify y parameters of two port network			
6 th	6	Internal 1 st viva – voce			
7 th	IST MINOR				
	TEST				
8 th	7	To calculate and verify ABCD parameters of two port network			
9 th	8	To calculate and verify H parameters of two port network			
10 th	9	To determine equivalent parameter of parallel connections of two port network			
11 th	10	To plot the frequency response of LPF and determine half power freq			
12 th	11	To plot the frequency response of HPF and determine half power freq			
13 th	12	To plot the frequency response of BPF and determine tha bandwidth			
14 th	2 ND MINOR TEST				
15 th	13	To synthesise a network of a given network function and verify its response			

Name of Faculty : Vikram Singh Bhambhu, ASSISTANT PROF (ECE) Discipline ECE 3RD : Subject : **Analog Electronics**

Week	Theory			
	Lecture Day	Торіс		
	1	Introduction to Analog electronics		
1 st	2	Conductivity of semiconducator		
	3	Carrier concentration in an intrinsic semiconductor		
	4	Fermilevel in intrinsic and extrinsic semiconductor		
	5	Carrier life time		
2 nd	6	Continuity Equation		
	7	Hall effect		
	8	Qualitative theory of pn junction		
	9	Pn junction as adiode		
3 rd	10	Band structure of an open circuited pn junction		
	11	Current component in pn diode		
	12	PN diode switching time, tunnel diode		
	13	Rectifier with filter circuit		
4 th	14	BJT construction opertation		
	15	Characterstics ,Ebbers moll model		
	16	BJT as an amplifier and switch		
	17	Limits of operation, thermal runway		
5 th	18	Stability factor bias stability of self bias		
	19	Emmiter bias , collector to base bias		
	20	Bias compensation		
	21	Thermistor and sensistor		
6 th	22	AC and DC Load linefor an amplifier		
	23	Transistor hybrid model		
	24	H parameter		
−th				
/		Minor Test 1		
	25	Analysis of Transistor using h narameter		
8 th	25	Symplified CE hybrid model		
0	20	Fraguancy response of PC counted Amplifier		
	27	MOSEET : Beview of device structure		
	29			
9 th	20	V-I Characteristics IEET		
5	21			
	22			
) J2	MOSEET as an Switch and amplifier EET small signal model		
10 th	33			
10	34			
	35	Common source apmlitier		
	36	Source follower		

	37	Biasing the FET
11 th	38	FET as Voltage Vrariable Resistor
	39	Miller Theorem
	40	Hybrid pi model
12 th	41	CE short circuit current gain
	42	Frequency Response
	43	Beta cut-off frequency
	44	Gain bandwidth product
	45	Series regulator
13 th	46	Shunt regulator
	47	Three terminal fixed IC Regulator 78xx/79xx
	48	Adjustable voltage regulator
14 th	Minor	Test 2
	49	SMPS
15 th	50	Revision
	51	Revision
	52	Revision

Name of Faculty	:	Poonam
Discipline	:	BTech ECE
Semester	:	III
Subject	:	Network analysis and synthesis (ECE-207-L)
Lesson Plan Duration	:	15 weeks

Work Load (Lecture/Practical)	per week (in hou	rs): Lectures 04 hours.
-------------------------------	------------------	-------------------------

Week		Actual	
		Covered	
	Lecture	Topic (Including Assignment/Test)	
	Day		
1 st	1	Introduction to laplace transformation	
1	2	Properties of Laplace transformation	
	3	Laplace transform of special signal waveforms	
	4	Inverse laplace transform	
nd	5	Use of laplace transform in solving electrical networks	
2^{na}	6	Problems and solution on laplace transform	
	7	Initial conditions of resistive, inductive and capacitive elements	
	8	Time domain analysis of simple linear circuits	
	9	Transient and steady state response of RC,RL,RLC Circuit to step	
3^{rd}		signal using laplace transform	
	10	Transient and steady state response of RC,RL,RLC Circuit to	
		ramp signal using laplace transform	
	11	Transient and steady state response of RC,RL,RLC Circuit to	
		impulse signal using laplace transform	
	12	Transient and steady state response of RC,RL,RLC Circuit to	
		sinusoidal signal using laplace transform	
	13	Problems and solutions	
4^{th}	14	Terminal pairs or Ports	
	15	Network functions for one-port and two-port networks	
	16	poles and zeros of Network functions	
	17	Demultiplexers Restrictions on pole and zero Locations for	
5th		driving point functions and transfer functions	
	18	Time domain behavior from the pole-zero plot.	
	19	Problems and solution on Time domain behavior from the pole-	
		zero plot.	
	20	Relationship of two-port variables	
	21	short-circuit Admittance parameters, open circuit impedance,	
6th		parameters	

	22	Transmission parameters, hybrid parameters	
	23	Relationships between parameter sets	
	24	Inter-connection of two port networks.	
7 th		Ist Minor Test	
	25	Concept of network graph	
8th	26	Terminology used in network graph	
	27	Relationship between twigs and links	
	28	Properties of tree in a graph	
	29	Assignment questions	
9th	30	Formation of incidence matrix, number of trees in a graph	
	31	Cut set matrix	
	32	Tie set matrix	
	33	Formulation of network equilibrium equation	
10th	34	network analysis using graph theory	
	35	Intoduction to filters, characteristics of filters	
	36	bipolar and MOS. devices	
	37	Bipolar logic families:RTL, DTL, DCTL	
	38	Passive filter:HPF	
a a th	39	LPF	
11"	40	BPF	
	41	BSF	
12th	42	Introduction to m derived filters	
	43	Introduction to active filters	
	44	Concept and significance of positive real functions	
13 th	45	Concept of network synthesis	
	46	Driving point immittance function structure of RC Network	
	47	Driving point immittance function structure of RL Network	
	48	Foster form of RCnetwork	
		2 nd Minor Test	
14th			
	49	Foster form of RCnetwork	
15th	50	Assignment Evaluation	
	51	CAUER form of RCnetwork	
	52	CAUER form of RCnetwork	