Lesson Plan for 5th sem ECE

Microwave and Radar

Lesson Plan

Name of Faculty :		POONAM, Assistant Professor		
Discipline	:	ECE		
Semester : Vth		Vth		
Subject : MICROWAVEANDRADARENGINEERING (EE - 1		MICROWAVEANDRADARENGINEERING (EE - 302E)		
Lesson Plan Duration: 15 weeks (from July, 2018 to Dec, 2018)				
Work Load (Lectutre/Practical) per week (in hours):Lectures-04, Practical -01				

Week Practicals Theory Topic (Including Assignment/Test) Practical Lecture Topic Day Day 1 Introduction, comparison with 1 Study of wave guide 1st transmission lines components. 2 Propagation in TEmode 3 Propagation in TMmode 4 Rectangular wave guide 5 TEM mode in rectangular wave 2 To study the characteristics of 2^{nd} reflex Klystron and determine guide 6 Characteristic Impedance its timing range. 7 Introduction to circular waveguides 8 Introduction to planar transmission lines 9 Directionalcouplers 3 To measure frequency of 3rd microwave source and 10 Tees demonstrate relationship 11 Hybrid ring amongguide dimensions, free 12 S-Parameters space wave length and guide wavelength 13 To measure VSWR of unknown 4 Attenuators 4^{th} 14 load and determine its Cavity Resonators 15 Mixers & Detectors impedance using a smith chart 16 Matched Load 17 Wave meter 5 To match impedance for 5th 18 PhaseShifter maximum power transfer using 19 slide screw tuner. Ferrite devices: Isolators 20 Circulators First Viva -Voce 21 Limitation of conventional 6 6th tubes 22 Construction of Klystron amplifier

	23	Operation and properties of		
		Klystron amplifier		
	24	Assignment I		
7th				Test
8th	25	Reflex Klystron	7	To measure coupling and directivityofdirectioncouplers.
oui	26	Magnetron		
	27	TWT, BWO		
	28	Crossed field amplifiers		
9th	29	Varactor diode	8	Tomeasureinsertionloss, isolation of a three port circulator.
	30	Tunnel diode		
	31	Schottky diode		
	32	GUNN diode		
	33	IMPATT diode	9	To measure the Q of a resonant
10th	34	TRAPATT diode		cavity.
	35	PIN diodes		
	36	MASER		
	37	Parametric amplifiers	10	To study the V-I characteristics of GUNN diode.
11th	38	Power measurement using		
		calorimeter		
	39	Power measurement using		
		bolometers		
	40	Measurement of SWR		
12th	41	Measurement of Frequency	11	Tomeasure VSWR, insertion
	42	Measurement of wavelength		losses and attenuation of a
	43	Measurement of impedance		fixed and variable attenuator.
	44	Microwave bridges		
101	45	Block Diagramand operation	12	Second Viva Voce
13th	46	Radar Frequencies		
	47	Simple form of Radar Equation		
	48	Assignment II		
14th		IInd Mir	nor Test.	
17:1	49	Prediction of Range		
15th		Performance		
	50	Pulse Repetition frequency		
	51	Range Ambiguities]	
	52	ApplicationsofRadar		

Poonam

Guest Lecturer (ECE)

VLSI (ECE-303-L)

Lesson Plan

Name of Faculty :		Vikram Singh Bhambhu, Guest Lecturer(ECE)	
Discipline	Discipline : Electronics & Communication Engg.		
Semester	Semester : 5th		
Subject	Subject : VLSI(ECE-303-L)		
Lesson Plan Duration: 15 weeks (from August, 2018 to December, 2018)			
Work Load (Lectutre/Practical) per week (in hours): Lectures 04 hours			

Week		Theory
	Lecture Day	Topic
	1	Introduction to IC technology
1 st	2	MOS Transistor enhancement mode
	3	MOS Transistor Depletion mode
	4	fabrication of NMOS
	5	CMOS Devices
2 nd	6	BiCMOS devices
	7	Equivalent circuit for MOSFET & CMOS
	8	MOS device design equations
	9	Evaluation aspects of MOS transistor
3 rd	10	threshold voltage & MOS transistor transconductance
	11	MOS transistor outputconductance, figure of merit,
	12	Channel length modulation, Body effect
	13	Crystal growth, diffusion
4^{th}	14	Oxidation, Ion implantation
	15	Epitaxy, photo lithography
	16	Etching, Metallization
	17	dielectric and poly-silicon film deposition
5^{th}	18	Introduction nmos inverter resistive load
	19	Enhancement load depletion mode
	20	determination of pull-up to pull-down ratio for an n-MOS inverter driven by another n-
		MOS inverter
	21	determination of pull-up to pull-down ratio for an n-MOS inverter driven by one or more
6^{th}		pass transistor
	22	CMOS-inverters : DC charaterstics
	23	Circuit model
	24	BiCMOS- logic
7 th		
,		Minor Test 1
	25	Latch up in CMOS circuitry
8 th	26	BiCMOS Latch up susceptibility
	27	Resistance estimation
	28	capacitance estimation
	29	Inductance estimation
9 th	30	switching characteristics

	31	CMOS gate transistor sizing
	32	power dissipation
	33	Gate logic :Inverter, nand gate nor gate
10^{th}	34	DCVSL logic
	35	Switch logic: transistor and transmission gate
	36	Ratiod logic, pseudo nmos logic
d	37	Dynamic logic ,Charge sharing Logic
11 th	38	Domino logic ,combinational logic:Multiplexer
	39	Sequential logic : two phase colcking ,mmory latches
	40	BasicSet up and hold time violation causes effect and remedies
	41	Scaling model and scaling factor for device parameters
12th	42	Limitation of scaling: substrate doping
	43	Limits of miniaturization, Limits of interconnect and contact Resistance
	44	MOS layer, Stick diagram: nmos .pmos design style
	45	Cmos design style, design rule and layout
13 th	46	Lambda based rule, layer repersentation
	47	Contact cut double metal mos process rule
	48	Cmos lambda based design rules
14 th		
		Minor Test 2
	49	Incrementer/ decremeter, left/right shift serial parallel register
15 th	50	Comparator for two n-bit number
	51	A two phase non overlapping cock generator with buffered o/p on both phases
	52	Design of Event driven element for EDL system

Vikram Singh Bhambhu

Guest Lecturer (ECE)

Antenna & Wave Propogation (ECE-309L)

Lesson Plan

Name of Faculty :		Gourav Sharma, Guest Faculty		
Discipline	:	Electronics & Communication Engg.		
Semester	:	5th		
Subject	:	Antenna & Wave Propogation (ECE-309L)		
Lesson Plan Duration:		15 weeks (from August, 2018 to November, 2018)		
Work Load (Lecture) :		Per week (in hours): Lectures 04 hours.		

Week		Theory		
	Lecture	Topic (Including Assignment/Test)		
	Day			
	1	Short Electric Dipole, Retarded Potential		
1^{st}	2	Radiation from a small current element		
	3	Field of short dipole		
	4	Power radiated by a current element and its radiation resistance		
	5	Linear antenna, Half wave Dipole		
2^{nd}	6	Radiation from a half wave Dipole		
	7	Antenna Impedance		
	8	Effect of ground antenna pattern		
	9	Input Impedance, Mutual Impedance		
3 rd	10	Antenna Pattern		
	11	Front to back ratio, Gain		
	12	Directivity, Radiation Resistance, Radiation Pattern		
	13	Radiation Power Density, Radiation Intensity Efficiency		
4 th	14	Aperture area, Impedance, Effective Length		
	15	Beam width, Reciprocity Theorem for Antenna & Its application		
	16	Broadside array, End fire array		
	17	Collinear Array & Parasitic array		
5^{th}	18	Two element array, array of point source		
	19	Pattern multiplication & Assignment 1		
	20	Liner array, Phased array		
	21	Tapering of arrays		
6^{th}	22	Binomials arrays		
	23	Isotropic antenna		
	24	Yagi-uda, Microwave antenna		
7th	1 st Minor Test			
41-	25	Parabolic feeds		
8^{th}	26	Conical, Helix antenna		

	27	Log periodic
	28	Horn, Microstrip antenna
	29	Patch antenna
9 th	30	Frequency independent concept
	31	RUMSEY's Principle
	32	Frequency independent log spiral antenna
	33	Frequency independent conical spiral antenna
10^{th}	34	Modes of Propagation
	35	Space and surface wave
	36	Reflection and Refraction waves by the ionosphere
	37	Tropo-spheric wave Propagation
11 th	38	Bending mechanism waves by the ionosphere
	39	Virtual Height
	40	MUF
	1	
12 th	41	Critical Frequency
	42	Skip Distance
	43	Direct propagation
	44	Space wave
41	45	Assignment-II
13 th	46	Revision & Problem Solving of 1 st Unit
	47	Revision & Problem Solving of 2 nd Unit
	48	Revision & Problem Solving of 2 nd Unit
14th		2 nd Minor Test
	49	Revision & Problem Solving of 3 rd Unit
15 th	50	Revision & Problem Solving of 4 th Unit
	51	Revision & Problem Solving of 5 th Unit
	52	Revision & Problem Solving of 5 th Unit

Gourav Sharma Guest Faculty E.C.E.Department

Name of the Faculty: Sudhir Dagar, Associate Professor Discipline : Computer Science and Engineering Semester : V

Subject : Microprocessor And Interfacing and Microprocessor And Interfacing Lab Lesson Plan Duration: 15 Weeks (from August 2018 to December 2018) Work load (Lecture/Practical per week in hours: Lectures-04, Practical-02

Week		Theory		Practical		
	Lecture day	Topic(including assignment/test)	Practical day	Торіс		
	1	Introduction to microprocessor	unj	Study of 8085 Microprocessor kit.		
1	2	8085 microprocessor architecture				
	3	Instruction set	1			
	4	Interrupt structure				
	5	Architecture of 8086		Write a program using 8085 and verify for :		
2	6	Block diagram of 8086	2	a. Addition of two 8-bit numbers.		
	7	Details of sub-blocks		b. Addition of two 8-bit numbers (with carry).		
	8	EU				
	9	BIU		Write a program using 8085 and verify for :		
	10	Memory segmentation	3	a. 8-bit subtraction (display borrow)		
	10	Physical address computation	5	b. 16-bit subtraction (display borrow)		
3	12	Program relocation		b. To bit subtraction (display borrow)		
	12	Addressing modes		Write a program using 8085 for multiplication of two		
	13	Instruction formats	4	8- bit numbers by repeated addition method. Check for		
4	15	Pin diagram		minimum number of additions and test for typical data.		
-	15	Description of various signals		minimum number of additions and test for typical data.		
	10	Instruction execution timing		Write a program using 8085 for multiplication of two		
	17	Assembler instruction format		8- bit numbers by bit rotation method and verify.		
5	18	Data transfer instructions	5	8- bit numbers by bit rotation method and verify.		
5	20	Arithmetic instructions	5			
6	20	Branch instructions		First viva-voce		
0	21	Looping instructions		First viva-voce		
	22	NOP and HLT instructions	6			
	23	Flag manipulation instructions				
7	24	I st Minor Test		Write a program using 8085 for division of two 8- bit		
1		1 st Minor Test		numbers by repeated subtraction method and test for typical data.		
	25	Shift instructions		Study of 8086 microprocessor kit		
	26	Rotate instructions	7			
8	27	Directive				
	28	operators				
	29	Assignment Questions		Write a program using 8086 for division of a defined double word (stored in a data segment) by another double Word division and verify.		
9	30	Programming examples				
	31	Assembler directives	8			
	32	Programming with an Assembler				
	33	Programming examples		Write a program using 8086 for finding the square root of a given number and verify.		
10	34	Coding style				
	35	The art of assembly language programming	9			
	36	Software development with interrupts				
	37	Introduction to Stack		Write a program using 8086 for copying 12 bytes of data from source to destination and verify		
11	38	Stack Structure of 8086				
	39	Introduction to Subroutines	10			
	40	Recursion				
	41	MACROS		Write a program using 8086 and verify for:		
	42	BIOS(Basic Input/output System)	11	a. Finding the largest number from an array.b. Finding the smallest number from an array.		
	43	DOS(Disk Operating System)				
	44	The 8255 PPI chip				
	45	Architecture	12	Write a program using 8086 for arranging an array of numbers in descending order and verify.		
	46	Control words				
13	47	Modes and examples				
	48	Introduction to DMA process				
14		IInd Minor Test				
	49	8237 DMA controller	13	Second viva-voce		
15						
15	50	Assignment Evaluation				
15	50 51	Assignment Evaluation 8259 Programmable interrupt controller				