Name of the Faculty:Sudhir Dagar,Associate Professor

Discipline: Electronics and Communication EngineeringSemester: VIISubject: Project

Lesson Plan Duration: 15 Weeks (from August 2018 to December 2018)

Work load (Lecture/Practical per week in hours: Lectures-00, Practical-06

Week	Theory		Practical		
	Lecture	Topic(incl	Practical	Торіс	
	day	uding	day		
		assignmen			
		t/test)			
1			1	Introduction	
			2	Project/Synopsis outlines	
2			3	Testing of circuit on bread board	
			4	Problem rectification if any	
3			5	Discussion regarding PCB layout preparation	
			6	Techniques for PCB fabrication	
4			7	Component mounting methods	
			8	Discussion/Practice of Soldering techniques	
5			9	Testing of circuit on PCB	
			10	Fault Diagnosis methodology/flow chart	
6			11	Discussion of Results	
			12	First viva-voce	
7				Ist Minor Test	
8			13	Presentation regarding Project/Synopsis report writing	
			14	Overview of Introduction chapter	
9			15	Overview of Objectives chapter	
			16	Overview of Work methodology/flow chart chapter	
10			17	Overview of Circuit diagram/block diagram chapter	
			18	Overview of Advantages & disadvantages chapter	
11			19	Overview of Applications chapter	
			20	Overview of Results chapter	
12			21	Overview of Conclusion chapter	
			22	Overview of Future scope & features chapter	
13			23	Overview of References chapter	
			24	Overview of Bibliography chapter	
14				IInd Minor Test	
15			25	Second viva voce	
		1	26	Final submission	

Lesson Plan

Name of Faculty :	Vikram Singh Bhambhu, Guest Lecturer(ECE)
Discipline :	Electronics & Communication Engg.
Semester :	7th
Subject :	Embedded System Design
Lesson Plan Duration:	15 weeks (from August, 2018 to December, 2018)

Work Load (Lectutre/Practical) per week (in hours): Lectures 04 hours

Week		Theory
	Lecture	Topic
	Day	
1 st	1	Introduction to Embedded System Design
1	2	Embedded Microcontroller
	3	External Memory Microcontroller
	4	Processor Architecture : Harvard vs Princeton
and	5	CISC vs RISC
2	6	Microcontroller Memory types
	7	Microcontroller Features :clocking
	8	I/O pins, Peripherals
ard	9	Interrupts
3	10	Timers
	11	Introduction to PIC microcontroller
	12	Architecture
, th	13	Pipeling
4"	14	Programme Memmory Consideration
	15	Addresing Modes
	16	CPU Register
th	17	Instruction set
511		
	18	Simple Operation
	19	Interrupt Logic
	20	Timer 2 Scalar initialization
.th	21	Interrupt service Routine
6	22	Loop time subroutine
	23	External interrupt
	24	Timers
7 th		
		Minor Test 1
- th	25	Synchronous serial port module
811	26	Serial peripheral device
	27	O/P Port etension
	28	I/P Port Extension
44	29	UART
9 th	30	Developing tools/ environment
	31	Assembly Language Programming style
	32	Interperator
	33	High level Language
10^{th}	34	Debugging
	35	Airthemetic operation

	36	Bit addresing
	37	Loop Control
11 th	38	Stack operation
	39	Subroutine
	40	RAM direct addresing
12^{th}	41	State machine
	42	Oscillator
	43	Timer interrupt
	44	Memmory mapped I/O
	45	Music Box
13 th	46	Mouse wheel turning
	47	PWM motor control
	48	Air craft demonstration
14^{th}		
		Minor Test 2
d	49	Ultrasonic distance measuring
15^{th}	50	Temperature Sensor
	51	Pressure Sensor
	52	Magnetic Field Sensor

Vikram Singh Bhambhu

Guest Lecturer (ECE)

Lesson Plan

Name of Faculty :	Vikram Singh Bhambhu, Guest Lecturer(ECE)
Discipline :	Electronics & Communication Engg.
Semester :	7th
Subject :	Embedded System Design
Lesson Plan Duration:	15 weeks (from August, 2018 to December, 2018)

Work Load (Lectutre/Practical) per week (in hours): Lectures 04 hours

Week		Theory
	Lecture	Topic
	Day	
1 st	1	Introduction to Embedded System Design
1	2	Embedded Microcontroller
	3	External Memory Microcontroller
	4	Processor Architecture : Harvard vs Princeton
and	5	CISC vs RISC
2	6	Microcontroller Memory types
	7	Microcontroller Features :clocking
	8	I/O pins, Peripherals
ard	9	Interrupts
3	10	Timers
	11	Introduction to PIC microcontroller
	12	Architecture
4 th	13	Pipeling
4	14	Programme Memmory Consideration
	15	Addresing Modes
	16	CPU Register
-th	17	Instruction set
5		
	18	Simple Operation
	19	Interrupt Logic
	20	Timer 2 Scalar initialization
cth	21	Interrupt service Routine
6	22	Loop time subroutine
	23	External interrupt
th	24	Timers
7'''		Minor Tect 1
		winor rest r
	25	Synchronous serial port module
8^{th}	25	Serial peripheral device
-	20	O/P Port etension
	28	I/P Port Extension
	20	I ART
9^{th}	30	Developing tools/environment
	31	Assembly Language Programming style
	32	Interperator
	33	High level Language
10^{th}	34	Debugging
-	35	Airthemetic operation
	55	

	36	Bit addresing
	37	Loop Control
11 th	38	Stack operation
	39	Subroutine
	40	RAM direct addresing
12 th	41	State machine
	42	Oscillator
	43	Timer interrupt
	44	Memmory mapped I/O
	45	Music Box
13 th	46	Mouse wheel turning
	47	PWM motor control
	48	Air craft demonstration
14^{th}		
		Minor Test 2
	49	Ultrasonic distance measuring
15 th	50	Temperature Sensor
	51	Pressure Sensor
	52	Magnetic Field Sensor

Vikram Singh Bhambhu

Guest Lecturer (ECE)

Name of the Faculty:SAHIL ARORA, ASSISTANT PROFESSOR (ECE)

Discipline : Electronics and Communication Engineering

Semester

Subject :Digital Signal Processing

:IV

Lesson Plan Duration: 15Weeks (from AUGUST 2018 to DECEMBER 2018)

Work load (Lecture/Practical per week in hours: Lectures-03, Tutorial-01,

Wee k		Theory	ACTUAL LESSON PLAN COVERED
	Lectur	Topic(including assignment/test)	
	e day		
	1	SIGNAL CLASSIFICATION	
1	2	FREQUENCY DOMAIN REPRESENTATION	
	3	TIME DOMAIN REPRESENTATION	
	4	REPRESENTATION OF SEQUENCE BY FOURIER	
		TRANSFORM	
	5	PROPERTIES OF FOURIER TRANSFORM	
2	6	DISCREATE TIME RANDOM SIGNALS	
	7	ENERGY AND POWER SIGNALS	
	8	DISCREATE TIME SYSTEMS	
	9	CLASSIFICATION OF DTS	
	10	PROPERTIES OF DTS	
	11	TIME INVARIENT SYSTEMS	
3	12	FIR SYSTEMS	
	13	IIR SYSTEMS	
	14	SAMPLING OF TIME SIGNALS	
4	15	SAMPLING THEOREM	
	16	APPLICATIONS	
	17	FREQUENCY DOMAIN REPRESENTATION OF	
		SAMPLING	
5	18	REPRESENTATION OF BAND LIMITED	
		SIGNALSFROM ITS SAMPLES	
	19	DISCREATE TIME PROCESSING OF CONTINOUS	
		TIME SIGNALS	
	20	PROBLEMS AND SOLUTIONPR	
6	21	CHANGING THE SAMPLING RATE USING	
		DISCREATE TIME PROCESSING.	
	22	PROBLEMS AND SOLUTION	
	23	INTRODUCTION OF Z TRANSFORM	
	24	PROBLEMS AND SOLUTION	
7		I st Minor Test	
	25	PROPERTIES OF REGION OF CONVERGANCE	
	26	PROPERTIES OF Z-TRANSFORM	
8	27	-DO-	
	28	PROBLEMS AND SOLUTION	
	29	Assignment Questions	
9	30	INVERSION OF Z-TRANSFORM	
	31	APPLICATION OF Z-TRANSFORM	
	32	Problems and solutions	
	33	BASICS OF DIGITAL FILTER	
10	34	FUNDAMENTALS OFDGITAL FILTERING	

	35	VARIOUS TYPES OF DIGITAL FILTER	
	36	DESIGN TECHNIQUES OF DIGITAL FILTERS	
	37	WINDOW TECHNIQUES FOR FIR FILTER	
11	38	WINDOW TECHNIQUES	
	39	BILINEAR TRANSFORMATION FOR IIR	
	40	PROBLEMS AND SOLUTION	
	41	BACKWARD DIFFERENCE METHOD FOR IIR	
	42	ANALYSIS OF FINITE WORD LENGTH EFFECTS OF	
		DSP	
12	43	DSP ALGORITHM IMPLEMENTATION	
		CONSIDERATION	
	44	PROBLEMS AND SOLUTIONS	
	45	APPLICATION OF DSP	
	46	MULTIRATE DSP	
13	47	INTRODUCTION TO MULTIRATE DSP	
	48	SAMPLING RATE CONVERSION	
14		2 ND MINOR TEST	
15	49	FILTER STRUCTURES, DIGITAL FILTER BANKS	
	50	AssignmentEvaluation	
	51	MULTISTAGE DECIMATOR & INTERPOLATORS	
	52	PROBLEMS AND SOLUTION	

SAHIL ARORA

ASSISTANT PROFESSOR

ECE Department

Lesson Plan

Name of Faculty	:	Gourav Sharma, Guest Faculty
Discipline	:	Electronics & Communication Engg.
Semester	:	7th
Subject	:	Optical Communication (EE-405E)
Lesson Plan Dur	ation:	15 weeks (from August, 2018 to November, 2018)
Work Load (Lec	tutre) :	Per week (in hours): Lectures 04 hours.

Week		Theory
	Lecture	Topic (Including Assignment/Test)
	Day	
	1	Electromagnetic spectrum used for optical communication
1^{st}	2	Block diagram of optical communication system
	3	Basics of transmission of light rays
	4	Advantages of optical fiber communication
	5	Optical fibers structures and their types
2^{nd}	6	Attenuation
	7	Scattering
	8	Absorption
	9	Fiber Bend Loss
3^{rd}	10	Dispersion
	11	Fiber Coupler
	12	Connector
	13	Problem & Solution of 1 st Unit
4^{th}	14	Problem & Solution of 2 nd Unit
	15	Light emitting diode
	16	Recombination processes
	17	The spectrum of recombination radiation
5^{th}	18	LED characteristics
	19	Internal quantum efficiency
	20	External quantum efficiency
	21	LED structure
6^{th}	22	Lens coupling to fiber
	23	Behavior at high frequencies.
	24	Problem & Solution of 3 rd Unit
7th		1 st Minor Test
	25	Basic principles of laser action in semi -conductors
8^{th}	26	optical gain,
	27	lasing threshold
	28	Assignment 1
	29	laser structures and characteristics
9 th	30	laser to fiber coupling
	31	Comparison with LED source.
	32	Problems and Solution of 4 th Unit

	33	Principles of optical detection
10^{th}	34	Quantum efficiency, Responsivity
	35	General principles of PIN photodetector
	36	Intrinsic absorption
	37	Materials and designs for PIN photodiodes, ,
11 th	38	Impulse and frequency response of PIN photodiodes
	39	Noise in PIN Photodiodes
	40	Problems and Solution
12 th	41	multiplication process
	42	APD Design,
	43	APD bandwidth,
	44	APD noise
	45	Assignment-II
13 th	46	Revision & Problem Solving of 1 st Unit
	47	Revision & Problem Solving of 2 nd Unit
	48	Revision & Problem Solving of 2 nd Unit
14th	2 nd Mino	r Test
	49	Revision & Problem Solving of 3 rd Unit
15 th	50	Revision & Problem Solving of 4 th Unit
	51	Revision & Problem Solving of 5 th Unit
	52	Revision & Problem Solving of 5 th Unit

Gourav Sharma Guest Faculty E.C.E.Department

Name of the Faculty:Sudhir Dagar,Associate Professor

Discipline : Electronics and Communication Engineering

Semester : VII

Subject : **Project**

Lesson Plan Duration: 15 Weeks (from August 2018 to December 2018)

Week	Theory		Practical	
	Lecture day	Topic(incl uding assignmen t/test)	Practical day	Торіс
1			1	Introduction
			2	Project/Synopsis outlines
2			3	Testing of circuit on bread board
			4	Problem rectification if any
3			5	Discussion regarding PCB layout preparation
			6	Techniques for PCB fabrication
4			7	Component mounting methods
			8	Discussion/Practice of Soldering techniques
5			9	Testing of circuit on PCB
			10	Fault Diagnosis methodology/flow chart
6			11	Discussion of Results
			12	First viva-voce
7				Ist Minor Test
8			13	Presentation regarding Project/Synopsis report writing
			14	Overview of Introduction chapter
9			15	Overview of Objectives chapter
			16	Overview of Work methodology/flow chart chapter
10			17	Overview of Circuit diagram/block diagram chapter
			18	Overview of Advantages & disadvantages chapter
11			19	Overview of Applications chapter
			20	Overview of Results chapter
12			21	Overview of Conclusion chapter
			22	Overview of Future scope & features chapter
13			23	Overview of References chapter
			24	Overview of Bibliography chapter
14				IInd Minor Test
15			25	Second viva voce
			26	Final submission

Work load (Lecture/Practical per week in hours: Lectures-00, Practical-06