<u>Lesson Plan</u>

Name of faculty	:	ManikGoyal
Discipline	:	Civil Engineering
Semester	:	3 rd (2 nd Year)
Subject	:	CVE – 201-L Structural Analysis - I
Work Load	:	Lecture: 05
Lesson plan duration	:	15 weeks (AUG 2018 – DEC 2018)

Week		Theory	Date
WEEK	Lecture day	Topic (Including Assignment Test)	
	1	Analysis of stresses and strains: Analysis of simple states of stresses and strains	
1 ct	2	Analysis of stresses and strains: Analysis of simple states of stresses and strains	
1	3	Analysis of stresses and strains: Analysis of simple states of stresses and strains	
	4	Elastic constraints	
	5	Elastic constraints	
	6	Bending stresses	
	7	Bending stresses	
2 nd	8	Theory of simple bending, flexure formula,	
	9	Combined stresses in beams	
	10	Combined stresses in beams	
3 rd	11	Shear stresses	
	12	Mohr's circle, Principle stresses and strains	
	13	Torsion in shafts and closed thin walled sections	
	14	Stresses and strains in cylindrical shells and spheres under internal pressure.	
	15	Stresses and strains in cylindrical shells and spheres under internal pressure.	
	16	Theory of Columns: Slenderness ratio, end connections, short columns,	
	17	Euler's critical buckling loads,	
4 th	18	Euler's critical buckling loads,	
	19	Eccentrically loaded short columns,	
	20	Eccentrically loaded short columns,	
	21	Cylinder columns subjected to axial and eccentric loading	
	22	Bending moment and shear force in determinate beams and frames: Definitions and sign conventions, axial force, shear force and bending moment diagrams.	
5 th	23	Bending moment and shear force in determinate beams and frames: axial force, shear force and bending moment diagrams.	
	24	Bending moment and shear force in determinate beams and frames: axial force, shear force and bending moment diagrams.	
	25	Bending moment and shear force in determinate beams and frames: axial force, shear force and bending moment diagrams.	

	26	Bending moment and shear force in determinate beams and frames: axial force shear force and bending moment diagrams	
		Three bineed eachers. Hariagnets threet sheen force and her ding moment	
	27	diagrams.	
6 th	28	Three hinged arches: Horizontal thrust, shear force and bending moment diagrams.	
	29	Three hinged arches: Horizontal thrust, shear force and bending moment diagrams.	
	30	Three hinged arches: Horizontal thrust, shear force and bending moment diagrams.	
7 th		MINOR TEST- I	
	31	Deflections in beams: Introduction, slope and deflections in beams by differential equations	
oth	32	Slope and deflections in beams by differential equations	
81	33	Slope and deflections in beams by differential equations,	
	34	Slope and deflections in beams by differential equations	
	35	Slope and deflections in beams by differential equations	
	36	Slope and deflections in beams by moment area method	
	37	Slope and deflections in beams by moment area method	
9 th	38	Slope and deflections in beams by moment area method	
	39	Slope and deflections in beams by conjugate beam method	
	40	Slope and deflections in beams by conjugate beam method	
	41	Slope and deflections in beams by conjugate beam method	
	42	Slope and deflections in beams by conjugate beam method	
10^{th}	43	Slope and deflections in beams by unit load method	
	44	Slope and deflections in beams by unit load method	
	45	Slope and deflections in beams by unit load method	
	46	Slope and deflections in beams by Principle of virtual work,	
	47	Slope and deflections in beams by Principle of virtual work,	
11 th	48	Maxwell's Law of Reciprocal Deflections.	
	49	Maxwell's Law of Reciprocal Deflections.	
	50	Maxwell's Law of Reciprocal Deflections.	
	51	Analysis of statically determinate trusses: Introduction, various types,	
	52	Analysis of statically determinate trusses: stability,	
12 th	53	Analysis of statically determinate trusses: stability,	
	54	Analysis of plane trusses by method of joints	
	55	Analysis of plane trusses by method of joints	
	56	Analysis of plane trusses by method of joints	
	57	Analysis of plane trusses by method of joints	
13 th	58	Method of sections.	
	59	Method of sections.	
	60	Method of sections.	
14 th		MINOR TEST- II	
15 th	61	Method of sections.	

62	Method of sections.	
63	Analysis of space trusses using tension coefficient method.	
64	Analysis of space trusses using tension coefficient method.	
65	Analysis of space trusses using tension coefficient method.	

Name of the Faculty	:	Mr.Kamaldeep
Discipline	:	B.Tech in Civil Engineering
Semester	:	III (2 nd Year)
Subject	:	CVE – 203-L, Fluid Mechanics- I
Lesson Plan Duration	:	15 Weeks (from Aug 2018 to Dec 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04

		Lesson Plan: CVE – 203-L, Fluid Mechanics- I	
Weels	Lecture	Theory	
week	Day	Topic(Including Assignment Test)	Date
	1	Fluid properties, mass density, specific weight, specific volume and specific volume and	
	1	specific gravity,	
	_	surface tension, capillarity, pressure inside a droplet and bubble due to surface tension,	
	2	compressibility viscosity.	
1 st	3	Newtonian and Non-newtonian fluids, real and ideal fluids	
-		Kinematics of Fluid Flow:	
	4	Stready& unsteady, uniform and non-uniform, laminar & turbulent flows, one, two & three	
		dimensional. flows.	
	5	stream lines, streak lines and path lines.	
nd	6	continuity equation in differential form.	
2110	7	Numerical Problems	
	8	rotation and circulation.	
	9	Numerical Problems	
r d	10	elementary explanation of stream function and velocity potential.	
310	11	Numerical Problems	
	12	rotational and irrotational flows,	
	13	Numerical Problems	
th	14	graphical and experimental methods of drawing flownets	
4 ^{ui}	15	Pressure-density-height relationship, gauge and absolute pressure,	
	16	Numerical Problems	
	17	simple differential and sensitive manometers, two liquid manometers,	
th	18	Numerical Problems	
5	19	pressure on plane and curved surfaces, center of pressure	
	20	Numerical Problems	
	21	Buoyancy, stability of immersed and floating bodies, determination of metacentric height,	
∠th	22	Numerical Problems	
0	23	Fluid masses subjected to uniform acceleration, free and forced vortex.	
	24	Euler's equation of motion along a streamline and its integration,	
	25		
7 th	26	MINOD TECTI	
	27	MINOR IESTI	
	28		
8 th	29	Numerical Problems	
	30	limitation of Bernouli's equation, Pitot tubes,	
	31	venturimeter,	
	32	Numerical Problems	
	33	Numerical Problems	
	34	Orficemeter, flow through orifices & mouth pieces, sharp crested weirs and notches,	
0.th		aeration of nappe.	
9 ^m	35	Orficemeter, flow through orifices & mouth pieces, sharp crested weirs and notches,	
		aeration of nappe.	
	36	Orficemeter, flow through orifices & mouth pieces, sharp crested weirs and notches,	
	27	aeration of happe.	
	20	Numerical Problems	
10^{th}	20	Numerical Problems	
	40	Poundeny layer analysis: Doundary layer thiskness, houndary layer over a flat rists	
	40	Doundary layer analysis. Doundary layer unekness, doundary layer over a nat plate,	
	41		
11^{th}	42	I urbulent boundary layer, laminar sub-layer,	
	43	Numerical Problems	
	44	Smooth and rough boundaries, local and average friction coefficient	

	45	Separation and its control.	
1.2th	46	Dimensional Analysis and Hydraulic Similitude: Dimensional analysis,	
12	47	Buckingham theorem	
	48	Important dimensionless numbers and their significance,	
	49	Numerical Problems	
1.2th	50	geometric, kinematic and dynamic similarity,	
15	51	Illustrations	
	52	model studies, physical modeling, similar and distorted models	
	53		
1 / th	54		
14	55	MINOR TESTII	
	56		
	57	model studies, physical modeling, similar and distorted models	
15th	58	model studies, physical modeling, similar and distorted models	
15	59	model studies, physical modeling, similar and distorted models	
	60	Illustrations	

Lesson Plan

Name of faculty	:	Mr.HinoniGoyal
Discipline	:	Civil Engineering
Semester	:	3 rd (2 nd YEAR)
Subject	:	SURVEYING-I/ CVE- 205-L
Lesson plan duration	:	15 weeks (AUG, 2018 – DEC, 2018)
Work Load	:	04

Week		Theory	
	Lecture	Topic (Including assignment / Test)	Date
	Day		
Unit-I			
	1	Fundamental Principles of Surveying: Definition	
1 st	2	Objects, classification	
	3	Fundamental principles	

	4	Methods of fixing stations	
	5	Measurement of distances: Direct measurement	
2 nd	6	Instruments for measuring distance	
	7	Instruments for making stations, chaining of line	
	8	Errors in chaining, tape corrections examples	
	9	Compass and Chain Traversing: Methods of traversing,	
3 rd	10	Instruments for measurement of angles-prismatic and surveyor's compass	
	11	Bearing of lines	
	12	Local attraction, examples	
		Unit-II	
	13	Leveling: Definition of terms used in leveling	
4 th	14	Types of levels and staff,	
	15	Temporary adjustment of levels	
	16	Principles of leveling, reduction of levels	
	17	Booking of staff readings, examples	
5 th	18	Contouring, characteristics of contours lines,	
	19	Locating contours, interpolation of contours.	
	20	Plane Table Surveying: Plane table	
	21	Methods of plane table surveying	
6 th	22	Radiation, intersection	
	23	Traversing and resection	
	24	Two point and three point problems	
7 th		1 st Minor Test	
	1	Unit-III	
8 th	25	Theodolite and Theodolite Traversing	
	26	Theodolites	
	27	Temporary adjustment of theodolite	
	28	Measurement of angles	
	29	Repetition and reiteration method,	
9 th	30	Repetition and reiteration method,	
	31	Traverse surveying with theodolite	
	32	Traverse surveying with theodolite	
	33	Checks in traversing	
10 ^m	34	Checks in traversing	
	35	Adjustment of closed traverse, examples	
	36	Adjustment of closed traverse, examples	
		Unit-IV	
1.1.th	37	Curves	
11"	38	Classification of curves	
	39	Elements of simple circular curve	
	40	Elements of simple circular curve	
1 Oth	41	Location of tangent points-chain and tape methods	
12	42	Instrumental methods	
	43	Examples of simple curves	
	44	Transition Curves-Length and types of transition curves	
1.2 th	45	Transition Curves-Length and types of transition curves	
15	40	Transition Curves-Length and types of transition curves	
	4/	Transition Curves-Length and types of transition curves	
1 4th	48	I ransition Curves-Length and types of transition curves	
14 th	40	Z ^{***} Ninor test	
15"	49	Length of combined curve, examples	+
	50	Length of combined curve, examples	+
		vertical Curves: Necessity and types of vertical curves	
	52	Vertical Curves: Necessity and types of vertical curves	

Name of the Faculty	:	Mr. Manoj Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	III (2 nd Year)
Subject	:	CVE – 207-L, Engineering Geology
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04

		Lesson Plan: CVE 207-L ENGINEERING GEOLOGY	
Week	Lecture	Theory	
week	Day	Topic(Including Assignment Test)	Date
	1	Introduction: Definition, object, scope and sub division of geology, geology around us.	
	2	The interior of the earth.	

	3	Importance of geology in Civil Engineering projects.	
1 st	4	Classification of Engineering Geology, scope of geology	
	5	Physical Geology: The external and internal geological forces causing changes,	
nd	6	Weathering and erosion of the surface of the earth.	
2110	7	Geological work of ice, water and winds.	
	8	Geological work of ice, water and winds	
	9	Geological work of ice, water and winds	
rd	10	Soil profile and its importance.	
310	11	Earthquakes and volcanoes.	
	12	Earthquakes and volcanoes	
	13	Mineralogy and Petrology: Definition - mineral and rocks. Classifications	
41.	14	Classification of important rock forming minerals.	
4 th	15	Simple description based on physical properties of minerals.	
	16	Simple description based on physical properties of minerals.	
	17	Rocks of earth surface, classification of rocks.	
th	18	Mineral composition, Textures, structure and origin of igneous rocks.	
5 th	19	Mineral composition, Textures, structure and origin of Sedimentary rocks.	
	20	Mineral composition, Textures, structure and origin of metamorphic rocks.	
	21	Aims and principles of stratigraphy.	
	22	Standard geological/stratigraphical time scale with its sub division and a short description based	
6 th	22	on engineering uses of formation of India.	
Ũ	23	Structural Geology: Forms and structures of rocks.	
	24	Bedding plane and outcrops	
	25		
7 th	26		
,	27	MINOR TEST- I	
	28		
8 th	29	Bedding plane and outcrops	
	30	Dip and Strike.	
	31	Elementary ideas about fold, fault,	
	32	Elementary ideas about joint and unconformity	
	33	Elementary ideas about recognition on outcrops	
oth	34	Importance of geological structures in Civil Engineering projects	
9	35	Applied Geology: Hydrogeology, water table, springs	
	36	Applied Geology: Hydrogeology, water table, springs	
	37	Artesian well, aquifers, ground water in engineering projects	
1 Oth	38	Artesian well, aquifers, ground water in engineering projects	
10	39	Artificial recharge of ground water,	
	40	Elementary ideas of geological investigations	
	41	Remote sensing techniques for geological and hydrological survey and investigation	
	42	Remote sensing techniques for geological and hydrological survey and investigation	
11 th	43	Uses of geological maps and interpretation of data, geological reports	
	44	Suitability and stability of foundation sites and abutments: Geological condition and their	
		influence on the selection, location,	
	45	Type and design of dams, reservoirs	
12 th	46	Type and design of dams, reservoirs	
12	47	Type and design of dams, reservoirs	
	48	Tunnels, highways, bridges etc.	
	49	l'unnels, highways, bridges etc.	
13 th	50	l'unnels, highways, bridges etc.	
	51	Landslides and Hill-slope stability.	
	52	Landslides and Hill-slope stability	
	53		
14 th	54		
17	55	MINOR TEST- II	
1	56		

	57	Improvement of foundation rocks: Precaution and treatment against faults, joints and ground	
	57	water,	
15 th	58	Retaining walls and other precautions.	
	59	Geology and environment of earth	
	60	Geology and environment of earth	

Name of the Faculty	:	Ms.ManjuGodara
Discipline	:	B.Tech in Civil Engineering
Semester	:	III (2 nd Year)
Subject	:	CVE – 209-L, BCM&D
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 03

Week	Theory			
	Lecture Day	Topic (Including assignment / Test)	Date	
	1	CONSTRUCTION: MasonryConstruction: Introduction, various terms used, stonemasonry- Dressing of stones, Classifications of stone masonry, safe permissible loads		
1 st	2	Brick masonry-bonds in brick work, structuralbrick work-cavity and hollow walls,		
1	3	reinforcedbrickwork, Defectsinbrick masonry,composite stone andbrick masonry,glass blockmasonry		
	4	Cavity and Partition Walls: Advantages, positionofcavity		
2 nd	5	Typesof non-bearingpartitions, Constructionaldetailsandprecautions		
2	6	Constructionofmasonrycavity wall.		
	7	Foundation: Functions, types of shallow foundations, sub-surface investigations		
2 rd	8	Geophysicalmethods, general featureofshallow foundation, Foundations inwater loggedareas,		
3	9	Designofmasonrywallfoundation, Introductiontodeep foundations i.e. pile and pierfoundations.		

	10	Damp-ProofingandWater-Proofing:	
	10	Defects and causes of dampness, prevention of dampness	
∕th	11	Materials used, damp-proofing treatmentin buildings, Damp-proofing treatmentin	
-	11	buildings	
	12	water proofing treatmentof roofs includingpitched roofs	
	13	RoofsandFloors: Types ofroofs, various termsused	
5 th	14	Rooftrusses-kingpost truss, queen post truss etc.	
	15	Floorstructures, ground, Basement and upper floors, various types offloorings.	
	16	Doors and Windows: Locations, sizes, typesofdoors and windows, fixures and	
	10	fastnersfordoorsand windows	
		Acoustics, Sound Insulationand FireProtection: Classification, measurementand	
6 th	17	transmissionofsound, sound absorber, classificationof absorbers, sound insulation of	
Ů		buildings	
	18	Wallconstructionandaccousticaldesignof auditorium, fire-resisting properties of materials,	
a th		Fireresistant construction and fire protection requirements for buildings.	
7 ^{ui}	10	1 st Minor Test	<u></u>
	19	B.MATERIALS Stones : Classification, requirements of good structural stone.	
8 th	20	Quarrying, blasting and sorting out of stones, Dressing, sawing and polishing,	
_		Preventionandseasoning of stone.	
	21	Brick and Tiles: Classificationofbricks, Constituentsofgood brick earth	
	22	Typesofterra-cotta, Uses ofterra-cotta	
9 th	23	Limes, Cementand Mortars: Classification of lime, manufacturing, artificial hydraulic lime	
	24	Storage of lime	
	25	Cementscomposition, types ofcement	
	26	manufacturing of ordinary Portlandcement, testing ofcement, specialtypes ofcement,	
10 th		storage ofcement	
	27	Mortars: Definition, proportions of lime and cementmortars, mortars formasonry and	
	20	plastering	
	28	Timber: Classificationoftimber, structureoftimber	
11 th	29	Seasoning of timber, detectsintimber, fire proofing oftimber	
	30	Timber, plywood, fiberboard, Masonite and its manufacturing, important Indiantimbers	
	31	Ferrous and Non-Ferrous Metals: Definitions, manufacturing of cast iron	
12 th	32	Manufacturingofsteel from pigiron, typesofsteel,	
	33	Marketable form ofsteel, Manufacturing ofaluminium and zinc	
	34	Paints and Varnishes: Basicconstituents of paints	
13 th	35	Types of paints, painting of wood	
	36	Constituents of varnishes, Characteristics and types of varnishes.	
14 ^m		2 ^{nu} Minor test	
4 =th	37	Plastic: Definition, classification of plastics, composition and rawmaterials	<u> </u>
15 ^m	38	Manufacturing, characteristics and uses	
	39	Polymerization, classification, special varieties.	

P.	ractical		
Work Load (Lecture / Practical) per week (in hrs.)	:	Practical – 02	
Lesson Plan Duration		15 Weeks (from AUG, 2018 to DEC, 2018)	
Subject	:	CVE – 201-P STRUCTURAL ANALYSIS – I LAB	
Semester	:	III (2 nd Year)	
Discipline		B. Tech in Civil Engineering	
Name of the Faculty	:	Mr. Harish	

	Practical				
Week	ek Lecture Tonio (Including Assignment Test)				
	day	Topic (including Assignment Test)			
1 st	1	Verification of reciprocal theorem of deflection using a simply supported beam. (G 1)			
1	2	Verification of reciprocal theorem of deflection using a simply supported beam. (G 2)			
and	3	Verification of moment area theorem for slopes and deflections of the beam(G 1)			
2	4	Verification of moment area theorem for slopes and deflections of the beam (G 2)			
	5	Deflections of a truss- horizontal deflection & vertical deflection of various joints of a			
2 rd	3	pin- jointed truss(G 1)			
5	6	Deflections of a truss- horizontal deflection & vertical deflection of various joints of a			
	0	pin- jointed truss (G 2)			
∕th	7	Elastic displacements (vertical & horizontal) of curved members.(G 1)			
4	8	Elastic displacements (vertical & horizontal) of curved members. (G 2)			
	0	Experimental and analytical study of 3 hinged arch and influence line for horizontal			
5th	9	thrust.(G 1)			
5	10	Experimental and analytical study of 3 hinged arch and influence line for horizontal			
	10	thrust. (G 2)			
	11	Experimental and analytical study of behavior of struts with various end conditions.			
6 th	11	(G 1)			
0	12	Experimental and analytical study of behavior of struts with various end conditions.			
	12	(G 2)			
7 th	13	MINOR TEST 1			
8 th	14	VIVA– VOCE Group - 1			

	15	VIVA-VOCE Group - 2
Oth	16	To determine elastic properties of a beam (G 1)
9	17	To determine elastic properties of a beam (G 2)
10 th	18	Uniaxial tension test for steel (plain bars) (G 1)
10	19	Uniaxial tension test for steel (plain bars) (G 2)
1 1 th	20	Uniaxial tension test for steel (Deformed bars) (G 1)
11	21	Uniaxial tension test for steel (Deformed bars) (G 2)
1 2 th	22	Uniaxial compression test on concrete specimens (G 1)
12	23	Uniaxial compression test on concrete specimens (G 2)
1.2th	24	Uniaxial compression test on brick specimens (G 1)
15	25	Uniaxial compression test on brick specimens (G 2)
14 th	26	MINOR TEST II
15 th	27	VIVA – VOCE Group - 1
	28	VIVA – VOCE Group - 2

Name of the Faculty	:	Mr.Kamaldeep
Discipline	:	B.Tech in Civil Engineering
Semester	:	III (2^{ND} Year)
Subject	:	CVE – 203- P FLUID MECHANICS – I LAB
Lesson Plan Duration	:	15 Weeks (from AUG, 2018 to DEC, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Practical – 02

	Practical			
Week	Lecture	Tonic (Including Assignment Test)	Date	
	day	Topic (menuning rissignment rest)		
1 st	1	To determine meta-centric height of the ship model. (G 1)		
1	2	To determine meta-centric height of the ship model.(G 2)		
n d	3	To verify the Bernoulli's theorem $(G \ 1)$		
2	4	To verify the Bernoulli's theorem (G 2)		
2 rd	5	To determine coefficient of discharge for an Orifice-meter. (G 1)		
5	6	To determine coefficient of discharge for an Orifice-meter.(G 2)		
⊿ th	7	To determine coefficient of discharge of a venture-meter (G 1)		
4	8	To determine coefficient of discharge of a venture-meter (G 2)		
5 th	9	To determine the various hydraulic coefficients of an Orifice (Cd, Cc, Cv). (G 1)		
5	10	To determine the various hydraulic coefficients of an Orifice (Cd, Cc, Cv). (G 2)		
6th11To determine coefficient of discharge for an Orifice under variable head.(G 1)12To determine coefficient of discharge for an Orifice under variable head.(G 2)		To determine coefficient of discharge for an Orifice under variable head.(G 1)		
		To determine coefficient of discharge for an Orifice under variable head.(G 2)		
7 th	13	MINOR TEST 1		
oth	14	VIVA– VOCE Group - 1		
0	15	VIVA– VOCE Group - 2		
Oth	16	To calibrate a given notch.(G 1)		
9	17	To calibrate a given notch.(G 2)		
10 th	18	To determine coefficient of discharge for a mouth piece. (G 1)		
10	¹⁹ 19 To determine coefficient of discharge for a mouth piece. (G 2)			
1 1 th	20	Drawing of a flow-net by Viscous Analogy Model and Sand Box Model. (G 1)		
11 21 Drawing of a flow-net by Viscous Analogy Model and Sand Box Mod		Drawing of a flow-net by Viscous Analogy Model and Sand Box Model. (G 2)		

12th 22 To study development of boundary layer over a flat plate (G 1)			
12	23	To study development of boundary layer over a flat plate (G 2)	
1.2th	24	To study velocity distribution in a rectangular open channel.(G 1)	
25		To study velocity distribution in a rectangular open channel.(G 2)	
14 th	26	MINOR TEST II	
15 th	27	VIVA– VOCE Group - 1	
	28	VIVA– VOCE Group - 2	

Name of the Faculty	:	Mr.HinoniGoyal
Discipline	:	B.Tech in Civil Engineering
Semester	:	III (2 nd Year)
Subject	:	CVE – 205- P SURVEYING – I LAB
Lesson Plan Duration	:	15 Weeks (from AUG 2018 to DEC 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Practical – 02

	Practical		
Week	Lecture day	Topic (Including Assignment Test)	Date
1 st	1	Chain surveying: Chaining and chain traversing. (G 1)	
	2	Chain surveying: Chaining and chain traversing. (G 2)	
and	3	Compass traversing (G1)	
2	4	Compass traversing (G2)	
3 rd	5	Plane tabling: methods of plane table surveying, two point problem (G 1)	
	6	Plane tabling: methods of plane table surveying, two point problem (G 2)	
4 th	7	To verify the, three point problem (G 1)	
4	8	To verify the, three point problem (G 2)	
⊂ th	9	To verify the, three point problem (G 1)	
3	10	To verify the, three point problem (G 2)	
6 th	11	Leveling: Profile leveling and plotting of longitudinal section and cross sections (G 1)	
0	12	Leveling: Profile leveling and plotting of longitudinal section and cross sections (G 2)	
7 th	13	MINOR TEST 1	
Oth	14	VIVA–VOCE Group - 1	
ð	15	VIVA–VOCE Group - 2	
Oth	16	Permanent adjustment of level.(G 1)	
9	17	Permanent adjustment of level. (G 2)	
10 th	18	Reciprocal leveling (G 1)	
	19	Reciprocal leveling (G 2)	
11 th	20	Plane tabling: methods of plane table surveying, two point problem (G 1)	
	21	Plane tabling: methods of plane table surveying, two point problem . (G 2)	
1.2 th	22	Contouring and preparation contour map (G 1)	
12	23	Contouring and preparation contour map (G 2)	

1.2 th	24	Use of Tangent Clinometers. (G 1)	
15	25	Use of Tangent Clinometers. (G 2)	
14 th	26	MINOR TEST II	
15 th	27	VIVA– VOCE Group - 1	
	28	VIVA–VOCE Group - 2	

<u>Lesson Plan</u>

Name of faculty	:	Harish Kumar/Sumeet/Manoj Kumar
Discipline	:	Civil Engineering/CSE/FT/EE
Semester	:	3 rd
Subject	:	ENVIROMENTAL STUDIES/EVS-201-L
Work Load	:	Lecture: 03
Lesson plan duration	:	15 weeks (AUG 2018 – DEC 2018)

Week	Theory		
	Lecture	Topic (Including assignment / Test)	Date
	Day		
	1	Environmental Studies - Definition, scope and importance, need for public	
1 st		awareness,	
	2	Concept of ecosystems, Structure and function of an ecosystem, Producers,	
		consumers and decomposers, Energy flow in the ecosystem,	
	3	Ecological succession ,Food chains, Food webs and ecological pyramids,	
		Introduction, types, characteristics features,	
	4	structure and function of the following ecosystems: Forest ecosystem, Grassland	
2 nd		ecosystem	
	5	Desert ecosystem, Aquatic ecosystem (Ponds, Stream, lakes, rivers, oceans,	
		estuaries),	
	6	Study of simple ecosystems – ponds, river, hill slopes etc.	
	7	Activity - Visit to a local area to document environmental assets-	
3 rd		river/forest/grassland/hill/mountain	
	8	Renewable and non-renewable resources, Natural resources and associated problems,	
	9	Forest resources: Use and over-exploitation, deforestation, case studies,	
	10	Timber extraction, mining, dams and their effects on forests and tribal people,	
4 th	11	Water resources: Use and over utilization of surface and ground water, floods,	
		droughts conflicts over water, dams benefits and problems,	
	12	Mineral resources: Use and exploitation, environmental effects of extracting and	

		mineral resources,	
	13	Food resources: World food problem, changes caused by agriculture and overgrazing,	
5 th		effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity,	
	14	Energy resources: Growing energy needs, renewable and non-renewable energy	
		sources, use of alternate energy sources, case studies,	
	15	Land resources: Land as a resource, land degradation, main induced landslides, soil	
		erosion and desertification,	
	16	Role of an individual in conservation of natural resources, Equitable use of resources	
6 th		for suitable lifestyle.	
	17	Introduction-Definition: genetic, species and ecosystem diversity	
	18	Bio geographical classification of India, Value of biodiversity: consumptive use,	
		productive use, social ethical, aesthetic and option values,	
7 th		1 st Minor Test	
8 th	19	Biodiversity at global, national and local level, India as a mega-diversity nation,	
	20	Hot-spot of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife,	
		man-wildlife conflicts, Endangered and endemic species of India, Study of common	
		plants, insects, birds.	
	21	Definition of Environment Pollution, types, sources, related problems	
0.th	22	Causes, effects and control measures of: Air Pollution, Water Pollution,	
9"	23	Causes, effects and control measures of: Soil pollution, Marine pollution, Noise	
		pollution,	<u> </u>
	24	Causes, effects and control measures of: Thermal pollution, Nuclear hazards, Solid	
		waste Management: effects and control measures of urban and industrial wastes.	
1 oth	25	individual in prevention of Role of and pollution, Pollution case studies,	<u> </u>
10	26	Disaster management: floods, earthquake, cyclone and landslides,	
	27	Activity - Visit to a local polluted site- Urban/Rural/Industrial/Agricultural	
1 1 th	28	Sustainable development – Definition, Importance and Need, From unsustainable of	
11	20	Sustainable development – Case Studies	
	29	Urban problems related to Energy, water conservation	l
	30	Urban problems related to rain water narvesting, watersned management,	
1 2 th	22	Environment athies leaves and possible solutions	<u> </u>
12	32	Environment etnics: Issues and possible solutions,	<u> </u>
	24	Vaste studies – Smog, Ozone layer depiction, Nuclear accidents	
1.2th	25	Wasteland rectamation, Consumerism and waste products	
15	20	Environment Protection Act, Air (Prevention and Control of Pollution) Act,	
	50	Water (Prevention and Control of Pollution) Act, whathe Protection Act, Forest	
1 /th		2 nd Minor test	L
14	27	2 Million test	
	57	Population growth variation among nation	
	38	Population explosion. Family Welfare Programme Environment and human health	
15 th	50	Human Rights	
	39	Value Education HIV/AIDS Women and Child Welfare Role of Information	
		Technology in Environment and human health. Case Studies	