Name of the Faculty	:	Mr.ManojPoonia
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 301-L, Structural Analysis - III
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)

Work Load (Lecture / Practical) per week (in hrs.) : Lectures – 04

	4	minuence mies for unce minged and two minged arenes	
	5	Influence lines for three hinged and two hinged arches	
	6	Load position for Max.S.F. and B.M. at a section in the span	
2^{nd}	7	Load position for Max.S.F. and B.M. at a section in the span	
	8	Influence Line for statically indeterminate Beams	
	9	Muller-Breslau Principle	
	10	Muller-Breslau Principle	
3^{rd}	11	I.L. for B.M. & S.F. for continuous Beams.	
	12	I.L. for B.M. & S.F. for continuous Beams.	
	13	Fixed Arches	
	14	Expression for H and B.M. at a section	
4^{th}	15	Expression for H and B.M. at a section	
	16	Elastic centre	
	17	Elastic centre	
	18	Rolling Loads: Introduction	
5^{th}	19	Single concentrated load	
	20	Uniformly distributed load longer than span	
	21	Shorter than span	
	22	Two point loads, several point loads	
6^{th}	23	Max.B.M. and S.F.Absolute	
	24	Max.B.M.	
7 th		1 st Minor Test	
	25	Kani's Method	
oth	26	Analysis of continuous beams and simple frames	
8	27	Analysis of continuous beams and simple frames	
	28	Analysis of continuous beams and simple frames	
	29	Analysis of continuous beams and simple frames	
9 th	30	Analysis of frames with different column lengths and end conditions of the bottom storey	

	31	Analysis of frames with different column lengths and end conditions of the bottom storey
	32	Analysis of frames with different column lengths and end conditions of the bottom storey
	33	Analysis of frames with different column lengths and end conditions of the bottom storey
	34	Analysis of frames with different column lengths and end conditions of the bottom storey
10 th	35	Analysis of frames with different column lengths and end conditions of the bottom storey
	36	Analysis of frames with different column lengths and end conditions of the bottom storey
	37	Approximate Analysis of frames
	38	(i) for vertical loads
11 th	39	(i) for vertical loads
	40	(ii) for lateral loads by Portal method & Cantilever method.
	41	(ii) for lateral loads by Portal method & Cantilever method.
	42	(ii) for lateral loads by Portal method & Cantilever method.
12 th	43	Matrix Methods: Introduction
	44	Stiffness Coefficients
	45	Flexibility Coefficients
	46	Development of flexibility & stiffness matrices for plane frame
13 th	47	Development of flexibility & stiffness matrices for plane frame
	48	Global axis and local axis
14 th		2 nd Minor test
15 th	49	Global axis and local axis
	50	analysis of plane frame
	51	pin jointed and rigid jointed
	52	pin jointed and rigid jointed

Lesson Plan			
	Theory		
Week	Lecture Day	Topic (Including Assignment Test)	Date
	1	Introduction: Properties of structural steel	
1 st	2	I.S. Rolled sections and I.S. specification	
	3	Connections: Importance, various types of connections,	
	4	Simple and moment resistant, riveted connections.	
2 nd	5	Bolted connections.	
	6	Bolted connections.	
3 rd	7	Welded connections.	
	8	Welded connections.	

	9	Design of Tension Members: Introduction, types of tension members,	
	10	net sectional areas,	
4 th	11	design of tension members,	
	12	design of tension members,	
	13	lug angles	
5 th	14	Splices	
	15	Design of Compression Members: Introduction, effective length and slenderness ratio,	
	16	various types of sections used for columns, built up columns, necessity,	
6 th	17	design of built up columns,	
	18	design of built up columns,	
	19		
7 th	20	MINOR TEST 1	
	21		
	22	laced and battened columns including the design of lacing and battens,	
8 th	23	laced and battened columns including the design of lacing and battens,	
	24	Design of eccentrically loaded compression members.	
	25	Column Bases and Footings: Introduction, types of column bases,	
9 th	26	Design of slab base and gusseted base - specifications	
	27	Design of gussested base subjected to eccentrically loading	
	28	Design of grillage foundations	
10 th	29	Design of grillage foundations	
	30	Introduction, types of sections, general design criteria for beams,	
	31	design of laterally supported and unsupported beams,	
11 th	32	design of laterally supported and unsupported beams,	
	33	design of built up beams,	
	34	Web buckling, web crippling and diagonal buckling.	
12 th	35	Design of gantry girder.	
	36	Design of gantry girder.	
	37	Introduction, elements of plate girder, design steps of a plate girder	
13 th	38	necessity of stiffeners in plate girder, various types of stiffeners	
	39	web and flange splices (brief introduction)	
	40		
14 th	41	MINOR TEST II	
	42		
	43	Curtailment of flange plates, design beam to column connections	
15 th	44	design beam to column connections	
	45	Introduction, design of framed and seat connection.	

Name of the Faculty	:	Mr.Sumeet
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 305-L, Design of Concrete Structures - I
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04
Name of the Faculty	:	Mr.Sumeet
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 305-L, Design of Concrete Structures - I
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04
Name of the Faculty	:	Mr.Sumeet
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 305-L, Design of Concrete Structures - I
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 04
Name of the Faculty		: Mr. Sumeet
Discipline		: B.Tech in Civil

Semester Subject Concrete Structures - I Lesson Plan Duration

: V (3rd Year)

: CVE - 305-L, Design of

: 15 Weeks (from Aug,

2018 to Dec, 2018)

Work Load (Lecture / Practical) per week (in hrs.) : Lectures - 04

Lesson Plan			
Week	Lecture Day	Topic (Including Assignment Test)	Date
	1	Elementary treatment of concrete technology: Physical requirements of cement, aggregate, admixture and reinforcement	
1 st	2	Strength and durability, shrinkage and creep. Design of concrete mixes, Acceptability criterion, I.S. Specifications,	
1	3	Design Philosophies in Reinforced Concrete: Working stress and limit state methods, Limit state v/s working stress method,	
	4	Design Philosophies in Reinforced Concrete: Working stress and limit state methods, Limit state v/s working stress method,	
	5	Building code, Normal distribution curve, characteristic strength and characteristics loads, design values, Partial safety factors and factored loads,	
2 nd	6	stress -strain relationship for concrete and steel	
	7	Working Stress Method: Basic assumptions, permissible stresses in concrete and steel,	
	8	Working Stress Method: Basic assumptions, permissible stresses in concrete and steel,	
	9	Design of singly and doubly reinforced rectangular and flanged beams in flexure,	
ard	10	Design of singly and doubly reinforced rectangular and flanged beams in flexure,	
5.4	11	Design of singly and doubly reinforced rectangular and flanged beams in flexure,	
	12	Design of singly and doubly reinforced rectangular and flanged beams in flexure,	
	13	Design of singly and doubly reinforced rectangular and flanged beams in flexure,	
	14	Steel beam theory, inverted flanged beams, design examples.	
4 th	15	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
	16	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
	17	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
eth	18	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
5	19	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
	20	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
6 th	21	Limit State Method: Basic assumptions, Analysis and design of singly and doubly reinforced rectangular flanged beams,	
	22	minimum and maximum reinforcement requirement, design examples	
	23	Analysis and Design of Sections in shearbond and torsion: Diagonal tension, shear reinforcement,	

		development length,	
	24	Analysis and Design of Sections in shearbond and torsion: Diagonal tension, shear reinforcement, development length,	
7 th		MINOR TEST 1	
	25	Anchorage and flexural bond, Torsional, stiffness, equivalent shear, Torsional reinforcement, Design examples.	
Qth	26	Design examples	
0	27	Columns and Footings: Effective length, Minimum eccentricity, short columns under axial compression	
	28	Columns and Footings: Effective length, Minimum eccentricity, short columns under axial compression	
	29	Uniaxial and biaxial bending, slender columns	
Oth	30	Isolated and wall footings, Design examples.	
7	31	Serviceability Limit State: Control of deflection, cracking, slenderness and vibrations,	
	32	Serviceability Limit State: Control of deflection, cracking, slenderness and vibrations,	
	33	Deflection and moment relationship for limiting values of span to depth,	
1 Oth	34	Limit state of crack width, Design examples.	
10	35	Design examples	
	36	Design examples	
	37	Concrete Reinforcement and Detailing: Requirements of good detailing cover to reinforcement, spacing of reinforcement, reinforcement splicing	
	38	Anchoring reinforcing bars in flexure and shear, curtailment of reinforcement.	
11 th	39	One way and Two Ways Slabs: General considerations, Design of one way and two ways slabs for distributed and concentrated loads	
	40	One way and Two Ways Slabs: General considerations, Design of one way and two ways slabs for distributed and concentrated loads	
	41	Design of one way and two ways slabs for distributed and concentrated loads	
1.2th	42	Design of one way and two ways slabs for distributed and concentrated loads	
12	43	Design of one way and two ways slabs for distributed and concentrated loads	
	44	Design of one way and two ways slabs for distributed and concentrated loads	
	45	Non-rectangular slabs, openings in slabs, Design examples.	
1.2th	46	Retaining Walls: Classification, Forces on retaining walls, design criteria, stability requirements,	
15	47	Design example	
	48	Design example	
14^{th}		MINOR TEST II	
	49	Proportioning of cantilever retaining walls, counterfort retaining walls, criteria for design of counter-forts, design examples	
15 th	50	design examples	
	51	design examples	
	52	design examples	

		Lasson Dlan			
Name	Name of the Faculty : Mr.Kamaldeep Singh				
Discipline : B.Tech in Civil Engineering					
Seme	Semester : V (3 rd Year)				
Subje	Subject : CVE – 307-L, Hydrology				
Lesso	Lesson Plan Duration : 15 Weeks (from Aug, 2018 to Dec, 2018)				
Work	Load (I	Lecture / Practical) per week (in hrs.) : Lectures – 03			
	l	-Duration- Frequency Curves.			
	8	Probable Max, Precipitation, Evaporation & Transpiration: Process, Evaporimeters			
	9	Evanoration & Transpiration: Empirical Relationships. Analytical Method			
	10	Reservoir Evanoration And Methods Of Its Control			
	10	Transpiration Evaporation And Its Measurement			
4 th	11	Desmonia Equation And Detential Econotrongarization. Infiltration, Infiltration Decoses, Initial Loss			
-	12	Penman's Equation And Potential Evapotranspiration. Influration: Influration Process, Initial Loss,			
	ļ	Infiltration Capacity			
.1	13	Measurement Of Infiltration, Infiltration Indices.			
5 th	14	Runoff: Factor Affecting Run-Off,			
	15	Estimation Of Runoff, Rainfall-Run Off Relationships, Measurement Of Stage-Staff Gauge,			
	16	Wire Gauge, Automatic Stage Recorder And Stage			
6 th	17	Hydrograph,			
	18	Measurement Of Velocity-Current Meters, Floats, Area Velocity Method,			
	19				
-7th	20				
	20	MINOR TEST I			
Oth	Maring Deat And Slong Area Mathed				
8	22	Moving Boat And Stope Area Method,			
	23	Electromagnetic, Ultra-Sonic And Dilution Methods Of Stream Flow Measurement,			
	24	Stage Discharge Relationship. Hydrograph: Discharge Hydrograph, Components			
0.th	25	Factors Affecting Shape Of Hydrograph, Effective Rainfall,			
9 ^m	26	Unit Hydrograph And Its Derivation,			
	27	Numerical Problems, Unit Hydrograph Of Different Durations,			
	28	Numerical Problems			
10 th	29	Use And Limitations Of UH, Triangular UH,			
	30	Snyder's Synthetic UH, Floods, Rational Methods,			
	31	Empirical Formulae, UH Method,			
11 th	32	Flood Frequency Methods,			
	33	Gumbel's Method, Graphical Method, Design Flood.			
	34	Ground Water: Occurrence, Types Of Aquifers,			
12^{th}	35	Compressibility Of Aquifers,			
	36	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water,			
	36 37	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law,			
13 th	36 37 38	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems			
13^{th}	36 37 38 39	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention,			
13 th	36 37 38 39 40	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention,			
13 th 14 th	36 37 38 39 40 41	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention, MINOR TEST II			
13 th 14 th	36 37 38 39 40 41 42	Water Table And Its Effects On Fluctuations, Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention, MINOR TEST II			
13 th 14 th	36 37 38 39 40 41 42 43	Water Table And Its Effects On Fluctuations , Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention, MINOR TEST II Storage Coefficient, Transmissibility.			
13 th 14 th 15 th	36 37 38 39 40 41 42 43 44	Water Table And Its Effects On Fluctuations , Wells And Springs, Movement Of Ground Water, Darcy's Law, Numerical Problems Permeability And Its Determination, Porosity, Specific Yield And Specific Retention, MINOR TEST II Storage Coefficient, Transmissibility. Well Hydraulics: Introduction , Types, Flow			

Name of the Faculty	:	Mr. Harish Kumar
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 309-L, Geotechnology - 1
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Lectures – 03

	6	Drainage & Dewatering: Introduction, Ditches And Sumps,	
	7	Well Point Systems, Shallow Well System, Deep Well Drainage,	
3 rd	8	Well Point Systems, Shallow Well System, Deep Well Drainage	
	9	Vacuum Method, Electro-Osmosis, Consolidation By Sand Piles.	
	10	Shallow Foundations-I : Introduction	
4 th	11	Design Criteria For Structural Safety Of Foundation (I) Location Of Footing,(II) Shear	
	11	Failure (III) Settlement	
	12	Ultimate Bearing Capacity, Modes Of Shear Failure,	

	13	Rankine's Analysis, Bearing Capacity Calculation	
5 th	14	Tergazi's Theory, Bearing Capacity Calculation	
	15	Skempton's Formula, Bearing Capacity Calculation	
	16	Effect Of Fluctuation Of G.W.T., Effect Of Eccentricity On Bearing Capacity, Inclined	
	10	Load, I.S Code Recomm.	
6 th	17	Factors Affecting Bearing Capacity, Methods Of Improving Bearing Capacity	
Ŭ	10	Shallow Foundations-II: Various Causes Of Settlement Of Foundation, Allowable	
	18	Bearing Pressure Based On Settlement, Settlement Calculation	
	19		
7 th	20		
	21	MINOR TEST-I	
	22	Elastic And Consolidation Settlement, Allowable Settlement According To I.S. Code	
		Plate Load Test And Its Interpretation, Bearing Capacity From Penetration Tests, Design	
8 th	23	Bearing Capacity	
		Shallow Foundations-III: Situation Suitable For Shallow Foundations Types Their	
	24	Relative Merits	
	25	Depth Of Foundation Footing On Slopes Unlift Of Footings	
9 th	26	Conventional Procedure Of Proportioning Of Footings	
	27	Combined Footings Raft Foundations Bearing Capacity Of Raft In Sands And Clays	
	28	Various Methods Of Designing Rafts Floating Foundations	
10 th	29	Pile Foundations-I: Introduction Necessity Of Pile Foundations Classification Of Piles	
	30	Load Capacity, Static Analysis, Analysis Of Pile Capacity In Sands And	
	31	Analysis Of Pile Capacity In Clays, Dynamic Analysis, Pile Load Tests	
1.1.th	32	Negative Skin Friction, Batter Piles, Lateral Load Capacity, Uplift Capacity Of Single	
11 ^m		Pile, Under-Reamed Pile	
	33	Pile Foundations-II: Group Action In Piles, Pile Spacing	
	34	Pile Group Capacity, Stress On Lower Strata, Settlement Analysis	
12 th	35	Design Of Pile Caps, Negative Skin Friction Of Pile Group	
	36	Uplift Resistance Of Pile Group, Lateral Resistance, Batter Pile Group	
12th	27	Drilled Piers And Caisson Foundations: Drilled Piers-Types, Uses	
15	57	Drilled Piers - Bearing Capacity, Settlement	
	38	Drilled Piers- Construction Procedure.	
	39	Caissons-Types, Bearing Capacity And Settlement, Caissons - Construction Procedure.	
	40		
14 th	41	MINOR TEST-II	
	42		
	43	Well Foundations-Shapes, Depth Of Well Foundations, Components,	
1.5 th	44	Factors Affecting Well Foundation Design Lateral Stability, Construction Procedure	
15	45	Sinking Of Wells, Rectification Of Tilts And Shifts, Recommended Values Of Tilts &	
		Shifts As Per I.S.3955	

Name of the Faculty	:	Mr.ManojPoonia
Discipline	:	B.Tech in Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE – 301-L, Structural Analysis - III
Lesson Plan Duration	:	15 Weeks (from Aug, 2018 to Dec, 2018)

Work Load (Lecture / Practical) per week (in hrs.) : Lectures – 04

	4	innuence mies for unree minged and two minged arches	
	5	Influence lines for three hinged and two hinged arches	
2 nd	6	Load position for Max.S.F. and B.M. at a section in the span	
	7	Load position for Max.S.F. and B.M. at a section in the span	
	8	Influence Line for statically indeterminate Beams	
3 rd	9	Muller-Breslau Principle	
	10	Muller-Breslau Principle	
	11	I.L. for B.M. & S.F. for continuous Beams.	
	12	I.L. for B.M. & S.F. for continuous Beams.	
	13	Fixed Arches	
4 th	14	Expression for H and B.M. at a section	
	15	Expression for H and B.M. at a section	
	16	Elastic centre	
	17	Elastic centre	
5 th	18	Rolling Loads: Introduction	

	19	Single concentrated load	
	20	Uniformly distributed load longer than span	
	21	Shorter than span	
	22	Two point loads, several point loads	
6 th	23	Max.B.M. and S.F.Absolute	
	24	Max.B.M.	
7 th		1 st Minor Test	
	25	Kani's Method	
Qth	26	Analysis of continuous beams and simple frames	
0	27	Analysis of continuous beams and simple frames	
	28	Analysis of continuous beams and simple frames	
	29	Analysis of continuous beams and simple frames	
	30	Analysis of frames with different column lengths and end conditions of the bottom storey	
9 th	31	Analysis of frames with different column lengths and end conditions of the bottom storey	
	32	Analysis of frames with different column lengths and end conditions of the bottom storey	
	33	Analysis of frames with different column lengths and end conditions of the bottom storey	
	34	Analysis of frames with different column lengths and end conditions of the bottom storey	
10 th	35	Analysis of frames with different column lengths and end conditions of the bottom storey	
	36	Analysis of frames with different column lengths and end conditions of the bottom storey	
	37	Approximate Analysis of frames	
	38	(i) for vertical loads	
11 th	39	(i) for vertical loads	
	40	(ii) for lateral loads by Portal method & Cantilever method.	
	41	(ii) for lateral loads by Portal method & Cantilever method.	
	42	(ii) for lateral loads by Portal method & Cantilever method.	
12 th	43	Matrix Methods: Introduction	
	44	Stiffness Coefficients	
	45	Flexibility Coefficients	
	46	Development of flexibility & stiffness matrices for plane frame	
13 th	47	Development of flexibility & stiffness matrices for plane frame	
	48	Global axis and local axis	
14 th		2 nd Minor test	

	1	Lesson Plan	
Week		Practical	
Γ	Day	Topics / Experiments	Date
	15 th	Exp ₄₉ 1 - Experiment on a two hinged arch for horizontal thrust & influence line for Global axis and local axis	
st		50 analysis of plane frame	
	2	Horizontal thins (diffound) rigid jointed	
nd	3	52 pin-jointed and rigid jointed Exp. 2 - Experimental and analytical study of a 3-bar pin-jointed Truss (Group 1)	
	4	Exp. 2 Experimental and analytical study of a 3-bar pin-jointed Truss (Group 2)	
ď	5 Name o	Exp. 3 - Experimental and analytical study of deflections for unsymmetrical bending of a f Charfievelts eam (Group 1) : Mr. ManojPoonia	
	Disscipl	nExp. 3 - Experimental and analytical study of deflectionset bring where the symbol is a	
	Semest	Cantilever beam (Group 2) : V (3 rd Year)	
h	Subjec	Exp. 4 - Begg'sdeformeter- verification of Muller Breslau principle (Group 1)	NICS – II (P)
	Lesson	PExp. 4 - Begg'sdeformeter- verification of Muller Breslau principle (Group 2), 2018 to DEC, 20	18)
h	Work I	Experimental and analytical study of an elastically coupled beam (Group 1)	
	10	Exp. 5 - Experimental and analytical study of an elastically coupled beam (Group 2)	
h	11	Exp. 6 - Sway in portal frames - demonstration (Group 1)	
	12	Exp. 6 - Sway in portal frames - demonstration (Group 2)	
h	13	MINOR TEST I	
	14		
h	15	VIVA– VOCE Group - 1	
	16	VIVA– VOCE Group - 2	
h	17	Exp. 7 - To study the cable geometry and statics for different loading conditions (Group 1)	
	18	Exp. 7 - To study the cable geometry and statics for different loading conditions (Group 2)	
) th	19	Exp. 8 - To plot stress-strain curve for concrete.(Group 1)	
	20	Exp. 8 - To plot stress-strain curve for concrete.(Group 2)	
1 th	21	Exp. 9 - Experiment on a two hinged arch for horizontal thrust & influence line for Horizontal thrust (Group 1)	
11	22	Exp. 9 - Experiment on a two hinged arch for horizontal thrust & influence line for Horizontal thrust (Group 2)	
2 th	23	Exp. 10 - Experimental and analytical study of deflections for unsymmetrical bending of a Cantilever beam.(Group 1) – Circular Base Plate	
	24	Exp. 10 - Experimental and analytical study of deflections for unsymmetrical bending of a Cantilever beam.(Group 2) – Circular Base Plate	
3 th	25	Exp. 10 - To plot stress-strain curve for concrete.(- Rectangular Base Plate	
	26	Exp. 10 - To plot stress-strain curve for concrete.(– Rectangular Base Plate	
1 th	27	MINOR TEST II	
	28		
5 th	29	VIVA-VOCE Group - 1	1

Name of the Faculty	:	Mr.Sumeet/Ms. ManjuGodara
Discipline	:	Civil Engineering
Semester	:	V (3 rd Year)
Subject	:	CVE-305-P CONCRETE LAB (P)
Lesson Plan Duration	:	15 Weeks (from AUG, 2018 to DEC, 2018)
Work Load (Lecture / Practical) per week (in hrs.)	:	Practical – 02

	Lecture	Topics / Experiments	Date
	day		
1 st	1	Exp. 1 - Standard consistency of cement using Vicat's apparatus. (Group 1)	
	2	Exp. 1 - Standard consistency of cement using Vicat's apparatus. (Group 2)	
2^{nd}	3	Exp. 2 - Soundness of cement by Le-Chatelier's apparatus.(Group 1)	
	4	Exp. 2 - Soundness of cement by Le-Chatelier's apparatus.(Group 2)	
3rd	5	Exp. 3 - Setting time of cement, initial and final.(Group 1)	
	6	Exp. 3 - Setting time of cement, initial and final.(Group 2)	
⊿ th	7	Exp. 4 - Compressive strength of cement.(Group 1)	
4	8	Exp. 4 - Compressive strength of cement. (Group 2)	
5 th	9	Exp. 5 - Fineness modulus of coarse and fine aggregates.(Group 1)	
3	10	Exp. 5 - Fineness modulus of coarse and fine aggregates.(Group 2)	
¢th	11	Exp. 6 - Moisture content and bulking of fine aggregate (Group 1)	
0	12	Exp. 6 - Moisture content and bulking of fine aggregate (Group 2)	
⊐th	13		
/	14	- MINOK IESI I	
oth	15	VIVA-VOCE Group - 1	
0	16	VIVA-VOCE Group - 2	
	17	Exp. 7 - Workability of cement concrete by (a) Slump test, (b) Compaction factor test,	
Oth	17	(c) Flow table test, (Group 1)	
9	18	Exp. 7 - Workability of cement concrete by (a) Slump test, (b) Compaction factor test,	
		(c) Flow table test (Group 2)	
1 Oth	19	Exp. 8 - Compressive strength of concrete by (a) Cube test, (b)Cylinder test (Group 1)	
10	20	Exp. 8 - Compressive strength of concrete by (a) Cube test, (b)Cylinder test (Group 2)	
1 1th	21	Exp. 9 - Indirect tensile strength of concrete-split cylinder test. (Group 1)	
11	22	Exp. 9 - Indirect tensile strength of concrete-split cylinder test (Group 2)	
1 Oth	23	Exp. 10 - Modulus of rupture of Concrete by flexure test (Group 1)	
12	24	Exp. 10 - Modulus of rupture of Concrete by flexure test (Group 2)	
1 Oth	25	Exp. 10 - Bond strength between steel bar and concrete by pull-out test (Group 1)	
13	26	Exp. 10 - Bond strength between steel bar and concrete by pull-out test (Group 2)	
1.4th	27		
14"	28	MINOK TEST II	
15 th	29	VIVA – VOCE Group - 1	1
	30	VIVA – VOCE Group - 2	

Lesson Plan				
Weagie of the Faculty : Practica Harish Kumar				
Discipl	ineecture	Topics / Experiments ivil Engineering	Date	
Semest	day ter	: V (3 rd Year)		
¹ st Subjec	t ¹	Exp. 1 - Grain Size Analysis-Hydrometer method (Group 1)		
Lesson	Plan Durat	Exp. 1 - Grain Size Analysis-Hydrometer method (Group 2) ion 15 Weeks (from AUG, 2018 to DEC, 2018)		
² nd Work	Lðad (Lectu	rexpractical) perweek (in firs.) ination (Groundical – 02		
	4	Exp. 2 - Shrinkage Limit Determination (Group 2)		
3 rd	5	Exp. 3 - Relative Density of Granular Soils (Group 1)		
	6	Exp. 3 - Relative Density of Granular Soils (Group 2)		
4 th	7	Exp. 4 - Consolidated Drained (CD) Triaxial Test (Group 1)		
	8	Exp. 4 - Consolidated Drained (CD) Triaxial Test (Group 2)		
5 th	9	Exp. 5 - Consolidated Undrained (CU) Triaxial Test with Pore Water Pressure measurement (Group 1)		
	10	Exp. 5 - Consolidated Undrained (CU) Triaxial Test with Pore Water Pressure measurement (Group 2)		
6 th	11	Exp. 6 - Consolidation Test (Group 1)		
	12	Exp. 6 - Consolidation Test (Group 2)		
7 th	13	MINOR TEST I		
	14			
8 th	15	VIVA– VOCE Group - 1		
	16	VIVA– VOCE Group - 2		
9 th	17	Exp. 7 - Undisturbed Sampling (Group 1)		
	18	Exp. 7 - Undisturbed Sampling (Group 2)		
10 th	19	Exp. 8 - Standard Penetration Test (Group 1)		
	20	Exp. 8 - Standard Penetration Test (Group 2)		
11 th	21	Exp. 9 - Dynamic Cone Penetration Test (Group 1)		
	22	Exp. 9 - Dynamic Cone Penetration Test (Group 2)		
12 th	23	Exp. 10 - Model Plate Load Test (Group 1) – Circular Base Plate		

	24	Exp. 10 - Model Plate Load Test (Group 2) – Circular Base Plate	
13 th	25	Exp. 10 - Model Plate Load Test (Group 1) – Rectangular Base Plate	
	26	Exp. 10 - Model Plate Load Test (Group 2) – Rectangular Base Plate	
14 th	27	MINOR TEST II	
	28		
15 th	29	VIVA– VOCE Group - 1	
	30	VIVA– VOCE Group - 2	