Lesson Plan/ Course Break - up

CVE-402-L BRIDGE ENGINEERING

Name of the Faculty : Mr. Manik Goyal

Discipline : B.Tech in Civil Engineering

Semester : VIII (4th Year)

Subject : CVE-402-L Bridge Engineering

Lesson Plan Duration : 15 Weeks

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

Week		Theory
	Lecture	Topic (Including assignment / Test)
	Day	
	1	Definition, components of bridge, classification of bridges.
1 st	2	Selection of site, economical span.
	3	Aesthetics consideration, necessary investigations. Essential design data.
	4	Standard Specifications for Roads and Railways Bridges:
2 nd		General, Indian Road Congress Bridge Code, width of carriage way, clearance,
	5	Various loads to be considered for the design of roads bridges, detailed explanation of IRC
		standard live loads.
	6	Various loads to be considered for the design of railway bridges, detailed explanation of
		IRC standard live loads.
	7	Design Consideration for R. C. C. Bridges:
3 rd		Various types of R.C.C. bridges(brief description of each type)
	8	Design of R.C.C. culvert bridges.
	9	Design of R.C.C. culvert bridges.
.1	10	Design of R.C.C. culvert bridges.
4 th	11	Design of R.C.C. T-beambridges.
	12	Design of R.C.C. T-beambridges.
	13	Design Consideration for Steel Bridges:
5 th		Various types of steel bridges (brief description of each)
	14	Various types of steel bridges (brief description of each)
	15	Design of truss bridges.
.1	16	Design of truss bridges.
6 th	17	Design of truss bridges.
	18	Design of truss bridges.
7 th		1 st Minor Test
8 th	19	Design of plate girder bridges.
	20	Design of plate girder bridges.
	21	Design of plate girder bridges.
.1	22	Design of plate girder bridges.
9 th	23	Design of plate girder bridges.
	24	Design of plate girder bridges.
	25	Design of plate girder bridges.
10 th	26	Design of plate girder bridges.
	27	Hydraulic & Structural Design:Piers
	28	Hydraulic & Structural Design:Piers
11 th	29	Hydraulic & Structural Design:Piers
	30	Hydraulic & Structural Design: Abutments

	31	Hydraulic & Structural Design: Abutments
12 th	32	Hydraulic & Structural Design: Abutments
	33	Hydraulic & Structural Design: wing-wall and approaches
	34	Hydraulic & Structural Design: wing-wall and approaches
13 th	35	Hydraulic & Structural Design: wing-wall and approaches
	36	Brief Description:
		Bearings, joints, articulation and other details.
14 th		2 nd Minor test
15 th	37	Bridge Foundation:
		Various types, Necessary investigations
	38	Design criteria of well foundation
	39	Design criteria of well foundation

CVE – 404-L Railway and Airport Engineering

Name of the Faculty : Mr. Pankaj Dahiya

Discipline: B.Tech in Civil Engineering

Semester : VIII (4thYear)

Subject: CVE – 404-L Railway and Airport Engineering

Lesson Plan Duration: 15 Weeks

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 02, Tutorial-01

	Theory			
Week	Lecture day	Topic (Including Assignment Test)		
	1	Introduction, Permanent Way and Rails, Rail transportation and its importance in India.		
1 st	2	Permanent way: requirements and components, Gauges in India and abroad. Selection of gauge. Coning of wheels. Adzing of sleepers		
	3	Rails: functions, composition of rail steel, types of rail sections, requirements of an ideal rail section, length of rails.		
2 nd	4	Defects in rails. Creep of rails. Long welded rails and continuously welded rails. Sleepers: functions, requirements of an ideal sleeper. Types of sleepers: wooden, cast iron, steel and concrete sleepers, advantages, disadvantages and suitability of each type.		
3 rd	5	Sleeper density. Fastenings for various types of sleepers: fish plates, spikes, bolts, bearing plates, keys, chairs, jaws, tie bars.		
3	6	Elastic fastenings. Ballast: functions, requirements, types of ballast and their suitability		
4 th	7	Points and Crossings: Necessity. Turnout: various components, working principle.		
4	8	Switch: components, types. Crossing: components and types. Design elements of a turnout, design of a simple turnout.		
	9	Layout plan of track junctions: crossovers, diamond crossing, single-double slips, throw switch, turn table, triangle.		
5 th	10	Signaling, Interlocking and Train Control: Signals: objects, types and classification. Semaphore signal: components, working principle. Requirements / principles of a good interlocking system.		
	11	Brief introduction to devices used in interlocking. Methods of control of train movements: absolute block system, automatic block system,		
6 th	12	Centralized train control and automatic train control systems. Geometric Design of the Track: Gradients, grade compensation. Super elevation, cant deficiency, negative super elevation.		
7 th	13	MINOR TEST I		
,	14	WIINOR ILST I		
8 th	15	Maximum permissible speed on curves. Tractive resistances, types. Hauling capacity of a locomotive.		
8	16	Stations, Yards and Track Maintenance: Stations: functions and classification. Junction, non-junction and terminal stations.		
o 41.	17	Yards: functions, types. Marshalling yard: functions, types.		
9 th	18	Maintenance of railway track: necessity, types of maintenance. Brief introduction to mechanized maintenance, M.S.P and D.T.M.		
10 th	19	Introduction and Airport Planning: Air transportation, its importance and characteristics, status in India		

	20	Layout plan of an airport and its basic elements: terminal area, apron, taxiway, runway, hanger, Aircraft characteristics, their effect on elements of an airport.
4 4 th	21	Site selection of an airport
11 th	22	Classification of airports, Runway Layout and Pavement Design: Runway orientation
12 th	23	Wind Rose diagram
12	24	Basic runway length. Corrections to basic runway length, Numerical Problem
13 th	25	Runway patterns
13***	26	Difference between highway and runway pavement, Types of runway pavements
1 4th	27	MINOR TEST II
14 th	28	
15 th	29	Design factors for runway pavement.
	30	Brief introduction to design of thickness of a runway pavement, Illustrative example for runway pavement thickness

CVE 406-L INDUSTRIAL WASTE WATER TREATMENT

Name of the Faculty : Ms. Menka Yadav

Discipline: B.Tech in Civil Engineering

Semester : VIII (4th Year)

Subject : CVE 406-L, IWWT

Lesson Plan Duration: 15 Weeks

Work Load (Lecture / Tutorial) per week (in hrs.): Lectures – 03, Tutorial-01

Week	Theory				
vveek	Lecture day	Topic (Including Assignment Test)			
	1	Industrial Waste Water - introduction			
1 st	2	Current Issues in Water and Wastewater Treatment Operations			
	3	Wastewater Regulations, Parameters, and Characteristics, Wastewater Sources and Types			
	4	Wastewater Treatment: Basic Overview			
2 nd	5	Collection Systems			
	6	Preliminary Treatment, Primary Sedimentation			
	7	Biological Treatment			
3 rd	8	Secondary Sedimentation			
	9	Advanced Treatment, Wastewater Disinfection			
	10	Discharge Effluent			
4 th	11	Methods for IWWT - Introduction			
	12	Effects of industrial wastes on stream, Sewerage systems - Introduction			
	13	Types of Sewerage systems, Design of economical diameter of sewerage pipe			
5 th	14	Wastewater treatment plant - introduction			
	15	Minimizing the effects of industrial effluents on waste water treatment plants and receiving streams-conservation of water			
	16	Pretreatment of Industrial Wastes - Introduction			
6 th	17	Pretreatment of Industrial Wastes – Unit Operations, Unit Processes			
	18	Reuse of waste water, volume reduction			
	19				
7 th	20	MINOR TEST I			
	21				
8 th	22	Strength reduction, neutralization, equalization and proportioning, Population equivalent			
8	23	Industrial effluent standards for disposal into inland surface water sources and on land for irrigation			

	24	Study of the following Industries from waste generation, quality and its treatment including brief overview of manufacturing process: Textile – manufacturing process brief introduction
	25	Textile wastes: Cotton textile wastes
9 th	26	Raw Material, Manufacturing Process, Spinning, weaving and sizing
	27	Desizing, Caustic Kiering, Bleaching, Souring, Synthetic Fiber Wastes, Silk and Jute Manufacturing wastes
	28	Tannery - manufacturing process brief introduction
10 th	29	Tannery - waster generation, Characteristics of waste water and its treatment
	30	Sugar Mill - manufacturing process brief introduction,waster generation and its treatment
	31	Distillery - manufacturing process brief introduction
11 th	32	Distillery - waster generation and its treatment
	33	Dairy, pulp & paper - manufacturing process brief introduction, waster generation and its treatment
	34	Metal plating, oil refinery - manufacturing process brief introduction
12 th	35	Metal plating, oil refinery - waster generation and its treatment
	36	Nitrogenous fertilizers - brief introduction, Ammonia Synthesis, Urea Synthesis
	37	Phosphoric Acid, Ammonium Sulphate, DAP
13 th	38	Methods of treatment
	39	Thermal power plants - manufacturing process brief introduction, waster generation and its treatment
	40	
14 th	41	MINOR TEST II
	42	
	43	Radio-active wastes - brief introduction
15 th	44	Handling Radioactive Material
	45	Waster generation, Case Studies, Treatment and Management

CVE-408-P Estimation and Accounts

Name of the Faculty : Mr. Pankaj Dahiya

Discipline : B.Tech in Civil Engineering

Semester : VIII (4thYear)

Subject : CVE-408-P Estimation and Accounts

Lesson Plan Duration: 15 Weeks

Work Load (Lecture / Practical) per week (in hrs.): Practical – 02

	Practical			
Week	Lecture day	Topic (Including Assignment Test)		
1 st	1	Estimate: Principles of estimation, units, items of work, different kinds of estimates,		
1	2	different methods of estimation, estimation of materials in single room building,		
2nd	3	Illustrative example		
2	4	two roomed building with different sections of walls, foundation, floors and roofs,		
	5	Illustrative example		
3 rd	6	R.B. and R.VC.C. works, Plastering, White-washing, Distempering and painting, doors and windows, lump sum items,		
4 th	7	Estimates of canals, roads etc.		
4'''	8	Illustrative example		
5 th	9	Specification of Works: Necessity of specifications, types of specifications, general specifications,		
3	10	Specification for bricks, cement, sand, water, lime, reinforcement;		
6 th	11	Detailed specifications for Earthwork, Cement, concrete, brick work, floorings, D.P.C., R.C.C.,		
Ü	12	Cement plastering, white and color washing, distempering, painting.		
7 th	13	MINOR TEST I		
,	14	MINOR IDST I		
8 th	15	VIVA – VOCE Group - 1		
8	16	VIVA – VOCE Group - 2		
9 th	17	Rate Analysis: Purpose, importance and requirements of rate analysis, units of measurement,		
9'''	18	Preparation of rate analysis, procedure of rate analysis for items:- Earthwork, concrete works,		
10 th	19	Procedure of rate analysis for items: -R.C.C. works, reinforced brick work, plastering, painting, finishing (white-washing, distempering).		
10	20	Public Works Account: Introduction, function of P.W. department, contract,		
11 th	21	Guidelines, types of contracts, their advantages and disadvantages,		

	22	Tender and acceptance of tender, Earnest money, security money, retention money,
12 th	23	Illustrative example of contract and tender
12	24	Measurement book, cash book, preparation, examination and payment of bills,
13 th	25	First and final bills, administrative sanction, technical sanction
13	26	Illustrative example of Measurement book and bill preparation
4.44	27	MINOR TEST II
14 th	28	
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2

CVE – 414-L Geosynthetics Engineering

(Department Elective – III)

Name of the Faculty : Ms. Manju Godara

Discipline: B.Tech in Civil Engineering

Semester : VIII (4th Year)

Subject: CVE-414-L, Geosynthetics Engineering

Lesson Plan Duration: 15 Weeks

Work Load (Lecture / Tutorial) per week (in hrs.) : Lectures – 03, Tutorial-01

XX 7 1 -	Theory			
Week	Lecture day	Topic (Including Assignment Test)		
	1	 Introduction to Geosynthetics Background of reinforced earth Basic description, mechanism and concept Historical Development of Geosynthetics 		
1 st	2	 Nomenclature related to geosynthetics Function of geosynthetics 		
	3	 Use around the World Applications of geosynthetics Development in India 		
	4	Geosynthetics classification, functions		
2 nd	5	Raw material used, different types of geosynthetics		
	6	 Raw Materials: Polyester, Polypropylene, Polyethylene, HDPE, CPE, CSPE, PA, Nylon, PVC etc. 		
	7	Their Durability and Ageing		
3 rd	8	Different types of geosynthetics: Geotextiles,		
	9	 Geogrids, Geonets and Geo membranes Physical properties of geosynthetics 		
	10	Mechanical properties		
4^{th}	11	Hydraulic – Permeability properties		
	12	Endurance Properties and Nano Material		
5 th	13	Degrading Agencies, Biological Resistance		
Э	14	Chemical Resistance and Weathering Resistance		

	15	Abrasion resistance,Durability properties
	16	Melt flow index and asphalt retention
	1.7	Manufacturing Methods of:
6 th	17	• Fibers, Yarn, Nonwoven Geotextiles,
	18	 D.S.F. Fabrics Geogrids – Introduction, Applications
	19	
7 th	20	MINOR TEST 1
	21	
	22	Tests on Geogrids: Aperture opening & Percent open area
8 th	23	Thickness of rib and junctions, Number of ribs per meter length test
	24	Mass per unit area test, Tensile strength test
	25	Interface frictional strength: Shear and pullout
9 th	26	Connection strength between facing blocks and Geogrids
	27	Sampling, Factors influencing Testing
	28	Physical Properties
10 th	29	Physical Properties
	30	 Mechanical Properties under Uniaxial loading Creep Testing
	31	Test on Geonets - I
11 th	32	Test on Geo membranes: thickness, density
	33	Tensile strength / Elongation test,Permeability test
	34	Erosion Control with Geogrids: Wind Erosion, Rain Water Erosion
	35	Erosion Control Measures, Placement of Geogrids
12 th		Bearing Capacity Improvement with Geogrids:
	36	Reinforced soil system,Geocells
13 th	37	Geofoam systems
15	38	Advantages, Mechanism, Modes of Failure

	39	Friction Coefficient,Experimental Studies
	40	
14 th	41	MINOR TEST – II
	42	
15 th	43	Application of Geosynthetics in Water Resource Projects: Case Study
		Dharoidam,Hiran II Dam
15"	44	Dharoidam,Hiran II Dam
	45	Meda Creek Irrigation SchemeLining of Kakarpar Canal

CVE-430-L PROJECT PLANNING & MANAGEMENT

Name of the Faculty : Mr.Harish Kumar

Discipline : B.Tech in Civil Engineering

Semester : VIII (4th Year)

Subject : CVE – 430-L, Project Planning & Management

Lesson Plan Duration: 15 Weeks (from Aug, 2018 to Dec, 2018)

Work Load (Lecture / Practical) per week (in hrs.) : Lectures – 03

	T	Lesson Plan		
Week	Lecture	Theory		
	Day	Topic(Including Assignment Test)	Date	
	1	Construction Management: Significance, objectives and functions of construction management		
. et	2	Types of constructions, resources for construction industry, stages for construction		
1 st	3	Construction team, engineering drawings.		
	4	Construction Contracts & Specifications: Introduction, types of contracts, contract document		
2nd	5	Specifications, important conditions of contract, arbitration		
2110	6	Construction Planning: Introduction, work breakdown structure, stages in planning-pretender stages		
	7	contract stage, scheduling, scheduling by bar charts,		
	8	contract stage, scheduling, scheduling by bar charts,		
3 rd	9	preparation of material, equipment, labour and finance schedule, Limitation of bar charts, milestone charts		
	10	Construction Organization: Principles of Organization, communication,		
.th	11	Leadership and human relations, types of Organizations,		
4 th	12	Organization for construction firm, site organization, Temporary services, job layout.		
	13	Network Techniques in Construction Management-I: CPM Introduction, network techniques, work break down,		
5 th	14	classification of activities, rules for developing networks,		
5 ^{u1}	15	network development-logic of network, allocation of time to various activities, Numerical Problems		
	16	Numerical Problems		
-th	17	Numerical Problems		
6 th	18	Fulkerson's rule for numbering events, network analysis,		
	19			
7 th	20			
•	21	MINOR TEST I		
8 th	22	determination of project schedules, critical path,		
	23	ladder construction, float in activities,		
ŀ	24	shared float, updating, resources allocation, Resources smoothing and resources leveling.		

	25	Numerical Problems	
9 th	26	Numerical Problems	
	27	Network Techniques in Construction Management-II-PERT: Probability concept in network, optimistic time, pessimistic time, most likely time,	
	28	Numerical Problems	
10 th	29	Numerical Problems	
	30	lapsed time, deviation, variance, standard deviation, Numerical Problems	
	31	slack critical path, probability of achieving completion time,	
11 th	32	central limit theorem, Numerical Problems	
11	33	Numerical Problems	
	34	Numerical Problems	
12 th	35	Cost-Time Analysis: Cost versus time, direct cost, indirect cost, total project cost and optimum duration,	
	36	Cost versus time, direct cost, indirect cost, total project cost and optimum duration,	
	37	Contracting the network for cost optimization,	
1.2th	38	steps in time cost optimization, illustrative examples.	
13 th	39	illustrative examples	
	40		
4 4th	41		
14 th	42	MINOR TEST II	
15 th	43	Inspection & Quality Control: Introduction, principles of inspection, reinforcement of specifications,	
	44	Stages in inspection and quality control,	
	45	Testing of structures, statistical analysis.	

CVE – 426-P TRANSPORTATION ENGINEERING – II (P)

Name of the Faculty : Mr. Manik Goyal

Discipline : B.Tech in Civil Engineering

Semester : VIII(4thYear)

Subject : CVE – 426-P Transportation Engineering – II (P)

Lesson Plan Duration: 15 Weeks (from January, 2019 to April, 2019)

Work Load (Lecture / Practical) per week (in hrs.): Practical – 02

	Practical		
Week	Lecture day	Topic (Including Assignment Test)	
1 st	1	Experiment 1 –Flakiness and Elongation Index of aggregates (Group 1)	
154	2	Experiment 1 –Flakiness and Elongation Index of aggregates (Group 2)	
2 nd	3	Experiment 2 – Specific gravity and water absorption test on aggregates (Group 1)	
2	4	Experiment 2 - Specific gravity and water absorption test on aggregates (Group 2)	
3 rd	5	Experiment 3 - Specific gravity of bitumen(Group 1)	
3.4	6	Experiment 3 - Specific gravity of bitumen (Group 2)	
4 th	7	Experiment 4 - Proportioning of aggregates (Group 1)	
4	8	Experiment 4 - Proportioning of aggregates (Group 2)	
5 th	9	Experiment 5 - Marshall's stability test (Group 1)	
5	10	Experiment 5 - Marshall's stability test (Group 2)	
6 th	11	Experiment 6 - Stripping test on aggregates (Group 1)	
0	12	Experiment 6 - Stripping test on aggregates (Group 2)	
7 th	13	MINOD TECT I	
/	14	MINOR TEST I	
Oth	15	VIVA – VOCE Group - 1	
8	8 th	VIVA – VOCE Group - 2	
9 th	17	Experiment 7– Determination of bitumen content (Group 1)	
9	18	Experiment 7 - Determination of bitumen content (Group 2)	
1 Oth	19 Experiment 8 -CBR lab test on soil (Grou	Experiment 8 -CBR lab test on soil (Group 1)	
10 th	20	Experiment 8 - CBR lab test on soil (Group 2)	
1.1th	21	IRC 37 – 2012 specification, CBR calculations and error corrections (Group 1)	
11 th	22	IRC 37 – 2012 specification, CBR calculations and error corrections (Group 2)	

12 th	23	Experiment 9–Traffic volume study using videography technique(Group 1)
	24	Experiment 9 - Traffic volume study using videography technique(Group 2)
13 th	25	Experiment 10 - Traffic speed study using videography technique(G1)
13	26	Experiment 10 - Traffic speed study using videography technique(G2)
1 4th	27	MINOD TECT II
14 th	28	MINOR TEST II
15 th	29	VIVA – VOCE Group - 1
	30	VIVA – VOCE Group - 2

CVE-428-P ENVIRONMENTAL ENGINEERING-II (P)

Name of the Faculty : Ms. Manju Godara

Discipline : B.Tech in Civil Engineering

Semester : VIII (4th Year)

Subject : CVE-428-PEnvironmental Engineering-II (P)

Lesson Plan Duration: 15 Weeks (from January, 2019 to April, 2019)

Work Load (Lecture / Practical) per week (in hrs.): Practical – 02

Week	Practical		
	Lecture day	Topic (Including Assignment Test)	
1 st	31	Exp. 1 - Determine the acidity and alkalinity of a sewage sample (Group 1)	
1	32	Exp. 1 - Determine the acidity and alkalinity of a sewage sample (Group 2)	
2 nd	33	Exp. 2 - Determine total, suspended, dissolved and settable solids in a sewage sample (Group 1)	
Ziid	34	Exp. 2 - Determine total, suspended, dissolved and settable solids in a sewage sample (Group 2)	
3 rd	35	Exp. 3 - Determine volatile and fixed solids in a sewage sample (Group 1)	
3	36	Exp. 3 - Determine volatile and fixed solids in a sewage sample.(Group 2)	
4 th	37	Exp. 4 - To determine oil and grease in a sewage sample.(Group 1)	
4	38	Exp. 4 - To determine oil and grease in a sewage sample.(Group 2)	
5 th	39	Exp. 5 - To determine the chloride concentration in a sewage sample. (Group 1)	
3	40	Exp. 5 - To determine the chloride concentration in a sewage sample.(Group 2)	
6 th	41	Exp. 6 - To determine the Sulphate concentration in a sewage sample.(Group 1)	
0	42	Exp. 6 - To determine the Sulphate concentration in a sewage sample.(Group 2)	
7 th	43	MINOR TEST I	
	44	WIINOK TEST I	
8 th	45	VIVA – VOCE Group - 1	
8	46	VIVA – VOCE Group - 2	
9 th	47 Exp. 7 - To determine the	Exp. 7 - To determine the B.O.D. of a given sewage sample. (Group 1)	
9"	48	Exp. 7 - To determine the B.O.D. of a given sewage sample.(Group 2)	
10 th	49	Exp. 8 - To determine the C.O.D. of a given sewage sample.(Group 1)	
10	50	Exp. 8 - To determine the C.O.D. of a given sewage sample.(Group 2)	
11 th	51	Exp. 9 - To determine the T.O.C. of a given sewage sample.(Group 1)	

	52	Exp. 9 - To determine the T.O.C. of a given sewage sample.(Group 2)
12 th	53	Exp. 10 - To determine the fecal count of a given sewage sample.(Group 1)
	54	Exp. 10 - To determine the fecal count of a given sewage sample.(Group 2)
13 th	55	Exp. 11 - Microscopic studies of a sewage. (Group 1)
	56	Exp. 11 - Microscopic studies of a sewage. (Group 2)
14 th	57	MINOR TEST II
	58	
15 th	59	VIVA – VOCE Group - 1
	60	VIVA – VOCE Group - 2