Lesson Plan/ Course Break – up ESC-202T-ENGINEERING MECHANICS

Name of the Faculty	Mr. ManikGoyal
Discipline	B.Tech in Civil Engineering
Semester	III (2 nd Year)
Subject	Engineering Mechanics
Lesson Plan Duration	15 Weeks (from September to December2021)
Work Load (Lecture / Practical) per week (in hrs.)	Lectures – 03

Week	Theory		
	Lecture	Topic (Including assignment / Test)	
	Day		
1 st	1	Review of Basic Force System: Laws of mechanic	
1	2	Vector algebra review	
	3	Moment of a force about a point and axis	
2 nd	4	Couple and couple moment	
	5	Addition and subtraction of couples	
	6	Moment of a couple about a line	
3 rd	7	Resultantofaforce system.Problems	
5	8	Equilibrium of forces: Introduction, Lami's theorem	
	9	Methods for the equilibrium of coplanar forces	
	10	Analyticalmethod for the equilibrium of coplanar forces	
4 th	11	Free body diagram, general equations of equilibrium	
	12	Free body diagram, general equations of equilibrium	
5 th	13	Tension in astring, Problems	
5	14	Truss andFrames: Types of frame	
	15	Types of stresses in frames (Tensile and compressive)	
	16	Assumptions forforces in the members of a perfect frame	
6 th	17	Analytical methods for the forces	
	18	Method of joints	
7 th		1 st Minor Test	
8 th	19	Method of sections(orMethodofmoments)	
	20	Simplysupported trusses. Problems	
	21	Simplysupportedtrusses, Problems	
oth	22	Centroid and center of gravity: Definition Centroid of regular shapes	
7		Symmetrical sections	
	23	Unsymmetrical sections Reference axis Centre of gravity of solid bodies	

	24	Centroid and centre of gravity of hollow sections. Problems	
th	25	Moment of Inertia: Introduction and significance, Parallel axis theorem Perpendicular axis	
10 th		theorem, Mass moment of inertia	
	26	Area moment of shapes: L-sections, T-sections, I-sections Moment of inertia of unsymmetrical	
	27	sections, nonow sections, Froduct of Infertia	
	27	Properties of product of inertia, Principal axis. Problems	
1.1. th	28	Particle dynamics- Rectilinear motion, Plane curvilinear motion (rectangular, path and	
11		polar coordinates)	
	29	Newton's 2 nd law (rectangular, path and polar coordinates), Work- kinetic energy, power, potential energy	
	30	Impulse-momentum (linear, angular), Impact (Direct and oblique). Problems	
12 th	31	Virtual work: Introduction, Concept and principle of virtual work, Virtual displacements, Sign conventions	
	32	Applications of principle of virtual work on beams carrying point load, uniformly distributed load	
	33	Applications of virtual work on ladders. Problems	
41-	34	Friction: Introduction, Types of friction, Laws of friction	
13 th	35	Equilibrium of a body on a rough horizontal plane and inclined plane	
	36	Equilibrium of a body on a rough inclined plane subjected to a force acting along the inclined plane	
14 th		2 nd Minor test	
15 th	37	Equilibrium of a body on a rough inclined plane subjected to a force acting along the inclined plane	
	38	Equilibrium of a body on a rough inclined plane subjected to a force acting horizontally. Problems	
	39	Equilibrium of a body on a rough inclined plane subjected to a force acting horizontally. Problems	