CMPS Lab (ET-424E)

Week	Theory	Practical	
	$\begin{aligned} & \text { Lecture } \\ & \text { Day } \end{aligned}$	Practical Day	Topic
$1^{\text {st }}$	1	1	Develop a program to do the following mathematical operations. i) Transpose of a matrix
	2		
	3		
	4		
$2^{\text {nd }}$	5	2	Develop a program to do the following mathematical operations. i) Multiplication of two matrices
	6		
	7		
	8		
$3{ }^{\text {rd }}$	9	3	Develop a program to do the following mathematical operations. i) Addition \& subtraction of two matrices.
	10		
	11		
	12		
Unit-II			
$4^{\text {th }}$	13	4	The demand estimate is the starting point for planning the further electric power Supply. The consistency of demand growth over the year has led to numerous attempts to fit mathematical curves of this trend. One of the simplest curves is $\mathbf{P}=$ Po $\exp \left\{\mathbf{a}\left(\mathbf{t}-\mathbf{t}_{0}\right)\right\}$ Where \mathbf{a} is the average per unit growth rate P is the demand in year „t" in GW P_{0} is the given demand at year t_{0} in GW., $\quad a=3.4$ percent Develop a table to compute the system demand from 1984 to 2005 on yearly basis. Calculate also the average yearly demand over this period.
	14		
	15		
	16		
$5^{\text {th }}$	17	5	You have been given with network data consisting of element no. starting node \& end node. Develop a program to make element node incident matrix. A and covert it into $\mathrm{Y}_{\text {bus }}$ as incidence matrix. A by choosing any bus as reference. Element No. Starting node End node
	18		
	19		
	20		
			$1 \begin{array}{lll}1 & \end{array}$
			2 1 6
			3 2 3
			4 3 4
			6 6 5
			7 1 5
			8 3 3
$6^{\text {th }}$	21	6	Write a program to formulate Y -Bus by non singular transformation \mathbf{Y} Bus $=[\mathbf{A}]$ ${ }^{t}[\mathbf{y}]$ [A],
	22		
	23		
	24		
$7^{\text {th }}$	$1^{\text {st }}$ Minor Test		
Unit-III			

$8^{\text {th }}$	25	7	Viva-Voice - 1st
	26		
	27		
	28		
$9^{\text {th }}$	29	8	Develop a program to solve a set of 4 simultaneous liner equations using Gaussian Elimination method
	30		
	31		
	32		
$10^{\text {th }}$	33	9	Develop a program to calculate $\mathrm{Z}_{\text {bus }}$ of a given network using building algorithm. Assume that no mutual coupling is involved in between the different elements.
	34		
	35		
	36		
		Unit-IV	
$11^{\text {th }}$	37	10	The Gauss Seidel method is also known as the method of successive displacements. Use Gauss Seidel method to find the solution of following equations$\begin{aligned} \mathrm{x}_{1}+\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{3}=10 & \\ \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3} & =6 \\ \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3} & =2 \end{aligned}$
	38		
	39		
	40		
$12^{\text {th }}$	41	11	You have been given with a 6 bus system. Apply load flow technique using Gauss Seidel method to solve up to two iterations.
	42		
	43		
	44		
$13^{\text {th }}$	45	12	Develop a program to find Eigen values for given Matrix
	46		
	47		
	48		
$14^{\text {th }}$		$2^{\text {nd }}$ Minor test	
$15^{\text {th }}$	49	13	Viva-Voice - 2nd
	50		
	51		
	52		

COMPUTER METHODS IN POWER SYSTEM (ET-402E)

Week		Theory	Practical	
	Lecture Day	Topic (Including assignment / Test)	Practical Day	Topic
Unit-I				
$1^{\text {st }}$,	Introduction to CMPS	1	
	2	General : Impact of computers		
	3	Orientation of engineering problems to computers		
	4	Review of matrices and matrix operations		
$2^{\text {nd }}$	5.	Review of matrices and matrix operations		
	6.	Review of matrices and matrix operations and numerical problems		
	7	Incidence and Network Matrices: Network graph	2	
	8	Various incidence matrices		
$3^{\text {rd }}$	9	$1{ }^{\text {st }}$ Assignment		
	10	Generalized element representation		
	11	Primitive network and primitive network matrices	3	
	12	Formation of various network matrices by singular transformations		
$4^{\text {th }}$	13	Formation of various network matrices by singular transformations		
	14	Formation of various network matrices by singular transformations		
	15	Inter-relations between various incidence matrices and network matrices		
	16	Numerical problems		
Unit-II				
$5^{\text {th }}$	17	Bus Impedance matrix: Building algorithm for bus impedance matrix	4	
	18	Modification of bus impedance matrix for change of reference bus and for network changes		
	19	Formation of bus admittance matrix and modification		
	20	Numerical problems		
$6^{\text {th }}$	21	Calculation of Z bus elements for Y Bus	5	
	22	Three-phase Elements: Representation of threephase network elements		
	23	Three-phase Elements: Representation of threephase network elements		
	24	Treatment under balanced excitation		
$7^{\text {th }}$	Minor Test			

$8^{\text {th }}$	25	Treatment under unbalanced excitation	6	
	26	Transformation matrices		
	27	Unbalanced elements		
	28	Short-Circuit Studies $:$ Introduction		
Unit-III				
9				

ELECTRIAL ENGINEERING MATERIALS \& PROCESSES (ET-404-E)

Week	Theory	
	Lecture Day	Topic (Including assignment / Test)
$1^{\text {st }}$	1	Conductors
	2	Properties of Conductors
	3	ACSR
	4	High resistivity material
$2^{\text {nd }}$	5	Properties of High resistivity material
	6	Alloys
	7	Soldering materials
	8	Brazing materials
$3^{\text {rd }}$	9	Super conductivity
	10	Super conductor materials
	11	Applications of Super conductor materials
	12	Assignment on conductors
$4^{\text {th }}$	13	Insulators
	14	Classification of insulators
	15	Dielectric materials
	16	Glass \& ceramics
$5^{\text {th }}$	17	Refractory materials
	18	Uses of refractory materials
	19	Optical fibers
	20	Lasers \& optoelectronic materials
$6^{\text {th }}$	21	Semiconductor materials
	22	Properties of semi-conductor materials
	23	Thermosetting materials
	24	Thermoplast materials
$\frac{7^{\text {th }}}{8^{\text {th }}}$		
	25	Classification of material
	26	Diamagnetic materials
	27	Paramagnetic materials
	28	Ferromagnetic materials
$9^{\text {th }}$	29	Curie law
	30	Curie weiss law (Qualitative study)
	31	Ferromagnetism
	32	Qualitative study of domain theory
$10^{\text {th }}$	33	Hysteresis phenomena
	34	Hard \& soft magnetic material \& their applications
	35	Ferrites
	36	Structure \& property of ferrites
$11^{\text {th }}$	37	Processes used in Plano technology
	38	Lapping
	39	Polishing
	40	Cleaning
$12^{\text {th }}$	41	Masking
	42	Photolithography
	43	Diffusion
	44	Oxidation \& Metallization

$13^{\text {th }}$	45	Welding wire bonding
	46	Packaging \& encapsulation
	47	Heating
$\mathbf{1 4}^{\text {th }}$	48	Induction \& dielectric
$15^{\text {th }}$	49	Electron beam welding
	50	Cutting
	51	Allnealing
	52	Cold \& hot rolling

Week	Theory	
	Lecture Day	Topic (Including assignment / Test)
$1^{\text {st }}$	1	Introduction to Special Electrical Machines
	2	Principles and Types of FHP motors
	3	Uses in domestic \& industrial applications
	4	Single phase Induction motors
$2^{\text {nd }}$	5	Types of single phase Induction Motors.
	6	Related Problem Analysis
	7	Different Characteristics of SEM
	8	Qualitative examination
$3^{\text {rd }}$	9	Starting of single phase Induction Motors.
	10	Running performance of IM
	11	Related Problems Solutions
	12	Assignment 1
$4^{\text {th }}$	13	Introduction to Linear Induction Motors
	14	Different types of LIM
	15	Actuators and its principle of operation
	16	Introduction to Linear Levitated machine
$5^{\text {th }}$	17	Different Applications of LLM
	18	Permanent magnet motors
	19	Related Problems Analysis
	20	High performance energy efficient machines
$6^{\text {th }}$	21	Effect of E.M.F injected into secondary circuits
	22	Related quantitative study
	23	Scherbius System
	24	Schrage Motors.
$7^{\text {th }}$		Minor Test
$8^{\text {th }}$	25	Introduction to Special Machines
	26	Special Induction Generators
	27	Special Induction Motors
	28	Special Machines associated with wind system
$9^{\text {th }}$	29	Special Machines associated with Solar system
	30	Special Machines associated with Tidal
	31	Biogas and other non-conventional forms
	32	Applications of SEMs
$10^{\text {th }}$	33	Related Problem Analysis
	34	Assignment 2
	35	Minor Test Discussion
	36	Overview about SEM used in nonconventional
$11^{\text {th }}$	37	Introduction to Synchronous motors
	38	Introduction to series universal motors
	39	Stepper motors and its types
	40	Permanent magnet DC Motors
$12^{\text {th }}$	41	Permanent magnet AC Motors
	42	Working principles of Switch Reluctance motor
	43	Servomotors and its types
	44	Shaded pole motors

$13^{\text {th }}$	45	Brushless DC motors
	46	Different applications of SEM
	47	Applications in Computers, Electronics field
	48	Communications and Information Technologies.
$14^{\text {th }}$		
$\mathbf{1 4}^{\text {th }}$	49	Related problem Analysis
$15^{\text {th }}$	50	Overview about SEMs
	51	PPT.
	52	Special test and discussion

OPERATION RESEARCH (ET-406-E)

Week	Theory		
	Lecture Day	Topic (Including Assignment/Test)	
	1	Development of operations Research ; characteristics and scope of operations	
Research			

15th	49	Mixed strategy (2 x2 games),
	50	Mixed strategy (2 x n games or m x 2 games),
	51	Mixed strategy (3 x3 games), two person zero sum games
	52	n-person zero sum games.

