CMPS Lab (ET-424E)

Week	Theory		Practical					
	Lecture	Practical	Topic					
	Day	Day						
1 st	1	1	Develop a mean to do the following mothem	ati an1 an anati an a				
1	23	1	i) Develop a program to do the following mathem	alical operations.				
	4							
	5							
2 nd	6	2	Develop a program to do the following mathem	atical operations.	operations.			
	7		i) Multiplication of two matrices	_				
	8							
ord	9	2						
3 rd	10	3	Develop a program to do the following mathem i) Addition & subtraction of two r					
	11 12		i) Addition & subtraction of two	natrices.				
	12		Unit-II					
	13							
4^{th}	14	4	The demand estimate is the starting point for pla					
	15			Supply. The consistency of demand growth over the year has led to numerous				
	16		attempts to fit mathematical curves of this trend Po exp { $a (t - t_0)$ } Where a is the average per up		curves is $\mathbf{P} =$			
			P is the demand in year "t" in GW	int growth fate				
			P_0 is the given demand at year t_0 in GW					
			Develop a table to compute the system	demand from 1984 to 2	2005 on			
			yearly basis.	1 (1 · · 1				
			Calculate also the average yearly deman	id over this period.				
	17							
5^{th}					ting node &			
	19		end					
	20		node. Develop a program to make elem covert it into Y _{bus} as incidence matrix. A	ent node incident matr	ix. A and			
			Element No.	Starting node	End node			
				C				
			1	1	2			
			2	1	6			
				_	_			
			3	2	3			
			4	3	4			
			5	4	5			
			6	6	5			
			7	1	5			
				c.				
			8	3	5			
	21							
6^{th}	22	6	Write a program to formulate Y-Bus by non singular transformation Y Bus = [A]		Bus = [A]			
23 ^t [y] [A],								
 4h	24							
7 th			1 st Minor Test					
	Unit-III							

8 th	25		
	26	7	Viva-Voice – 1st
	27		
	28		
	29		
9 th	30	8	Develop a program to solve a set of 4 simultaneous liner equations using Gaussian
	31		Elimination method
	32		
	33		
10 th	34	9	Develop a program to calculate Z_{bus} of a given network using building algorithm.
	35		Assume that no mutual coupling is involved in between the different elements.
	36		
	1	ſ	Unit-IV
	37		
11 th	38	10	The Gauss Seidel method is also known as the method of successive
	39		displacements. Use Gauss Seidel method to find the solution of following
	40		equations $y_{1} + y_{2} y_{3} = 10$
			$\begin{array}{rcl} x_1 + x_1 x_2 + x_3 &= 10 \\ x_1 + x_2 + x_3 &= 6 \end{array}$
			$\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 \qquad = 6$
			$x_1 + x_2 - x_3 = 2$
			$A_1 + A_2 - A_3 = -2$
	41		
12 th	42	11	You have been given with a 6 bus system. Apply load flow technique using Gauss
	43		Seidel method to solve up to two iterations.
	44		
	45		
13 th	46	12	Develop a program to find Eigen values for given Matrix
	47		
	48		
14 th			2 nd Minor test
15 th	49		
	50	13	Viva-Voice – 2nd
	51		
	52		

COMPUTER METHODS IN POWER SYSTEM (ET-402E)

Week		Theory		Practical	
	Lecture	Topic (Including assignment / Test)	Practical Topic		
	Day		Day	1	
	2	Unit-I			
	1	Introduction to CMPS			
1^{st}	2	General : Impact of computers	1		
	3	Orientation of engineering problems to computers			
	4	Review of matrices and matrix operations			
	5.	Review of matrices and matrix operations			
2 nd	6.	Review of matrices and matrix operations and numerical problems			
	7	Incidence and Network Matrices: Network graph			
	8	Various incidence matrices	2		
	9	1 st Assignment			
3 rd	10	Generalized element representation			
	11	Primitive network and primitive network matrices			
	12	Formation of various network matrices by singular	3		
		transformations			
4 th	13	Formation of various network matrices by singular			
		transformations			
	14	Formation of various network matrices by singular			
		transformations			
	15	Inter-relations between various incidence matrices			
		and network matrices			
	16	Numerical problems			
		Unit-II			
.1	17	Bus Impedance matrix: Building algorithm for bus			
5 th		impedance matrix	4		
	18	Modification of bus impedance matrix for change			
		of reference bus and for network changes			
	19	Formation of bus admittance matrix and			
		modification			
	20	Numerical problems			
41-	21	Calculation of Z bus elements for Y Bus			
6 th	22	Three-phase Elements: Representation of three- phase network elements	5		
	23	Three-phase Elements: Representation of three- phase network elements			
ŀ	24	Treatment under balanced excitation			
7 th		Minor Test	<u> </u>		

	25	Treatment under unbalanced excitation				
8^{th}	8 th 26 Transformation matrices 6					
	27	Unbalanced elements				
	28 Short-Circuit Studies : Introduction					
	Unit-III					
9 th	29	Network short-circuit studies using Z bus				

	30	Short-circuit calculations using symmetrical	7	
	50	components for various types of faults	,	
	31	Load-Flow Studies : Introduction		
	32	Importance of load flow studies		
	33	Classification of buses, Load-flow equations		
10 th	34	Iterative methods: Computer algorithm and load flow	8	
10	54	solutions using Gauss Seidel method	0	
	35	Computer algorithm and load flow solutions using		
		Newton-Raphson method		
	36	Decoupled and fast decoupled load-flow solutions		
	37	Representation of regulating and off-nominal ratio		
11^{th}		transformers	9	
	38	Comparison of load-flow solution methods		
	39	Sparsity: Introduction		
	40	Optimally ordered triangular factorization		
		Unit-IV		
	41	Schemes of optimal ordering		
12 th	42	Stability Studies: Introduction	10	
	43	Algorithmic flow chart		
	44	Transient stability solution using Modified Euler		
		method		
	45	2 nd Assignment		
13 th	46	Numerical problems	11	
	47	Power System Security: Introduction		
	48	Contingency analysis using Z Bus and various		
		distribution factors		
14 th		2 nd Minor test		
15 th	49	Revision		
	50	Revision	12	
	51	Old university papers discussions		
	52	Old university papers discussions		

ELECTRIAL ENGINEERING MATERIALS & PROCESSES (ET-404-E)

Week		Theory
	Lecture	Topic (Including assignment / Test)
	Day	
	1	Conductors
1^{st}	2	Properties of Conductors
	3	ACSR
	4	High resistivity material
	5	Properties of High resistivity material
2^{nd}	6	Alloys
	7	Soldering materials
	8	Brazing materials
	9	Super conductivity
3 rd	10	Super conductor materials
	11	Applications of Super conductor materials
	12	Assignment on conductors
	13	Insulators
4^{th}	14	Classification of insulators
	15	Dielectric materials
	16	Glass & ceramics
	17	Refractory materials
5 th	18	Uses of refractory materials
	19	Optical fibers
	20	Lasers & optoelectronic materials
	21	Semiconductor materials
6 th	22	Properties of semi-conductor materials
	23	Thermosetting materials
	24	Thermoplast materials
7 th		
8 th	25	Classification of material
	26	Diamagnetic materials
	27	Paramagnetic materials
	28	Ferromagnetic materials
	29	Curie law
9 th	30	Curie weiss law (Qualitative study)
	31	Ferromagnetism
	32	Qualitative study of domain theory
	33	Hysteresis phenomena
10^{th}	34	Hard & soft magnetic material & their applications
	35	Ferrites
	36	Structure & property of ferrites
	37	Processes used in Plano technology
11^{th}	38	Lapping
	39	Polishing
	40	Cleaning
	41	Masking
12^{th}	42	Photolithography
	43	Diffusion
	44	Oxidation & Metallization

	45	5 Welding wire bonding		
13 th	46	Packaging & encapsulation		
	47	Heating		
	48	Induction & dielectric		
14 th				
15 th	49	Electron beam welding		
	50	Cutting		
	51	Allnealing		
	52	Cold & hot rolling		

SPECIAL ELECTRICAL MACHINES (ET-408E)

Week		Theory
	Lecture Day	Topic (Including assignment / Test)
	1	Introduction to Special Electrical Machines
1 st	2	Principles and Types of FHP motors
	3	Uses in domestic & industrial applications
	4	Single phase Induction motors
	5	Types of single phase Induction Motors.
2^{nd}	6	Related Problem Analysis
	7	Different Characteristics of SEM
	8	Qualitative examination
	9	Starting of single phase Induction Motors.
3 rd	10	Running performance of IM
	11	Related Problems Solutions
	12	Assignment 1
	13	Introduction to Linear Induction Motors
4 th	14	Different types of LIM
	15	Actuators and its principle of operation
	16	Introduction to Linear Levitated machine
	17	Different Applications of LLM
5 th	18	Permanent magnet motors
	19	Related Problems Analysis
-	20	High performance energy efficient machines
	21	Effect of E.M.F injected into secondary circuits
6 th	22	Related quantitative study
	23	Scherbius System
	24	Schrage Motors.
7 th		Minor Test
8 th	25	Introduction to Special Machines
	26	Special Induction Generators
	27	Special Induction Motors
	28	Special Machines associated with wind system
	29	Special Machines associated with Solar system
9 th	30	Special Machines associated with Tidal
	31	Biogas and other non-conventional forms
	32	Applications of SEMs
	33	Related Problem Analysis
10 th	34	Assignment 2
	35	Minor Test Discussion
F	36	Overview about SEM used in nonconventional
	37	Introduction to Synchronous motors
11 th	38	Introduction to series universal motors
F	39	Stepper motors and its types
F	40	Permanent magnet DC Motors
	41	Permanent magnet AC Motors
12 th	42	Working principles of Switch Reluctance motor
F	43	Servomotors and its types
	44	Shaded pole motors

	45	Brushless DC motors
13 th	46	Different applications of SEM
	47	Applications in Computers, Electronics field
	48	Communications and Information Technologies.
14 th		
14 th		
15 th	49	Related problem Analysis
	50	Overview about SEMs
	51	PPT.
	52	Special test and discussion

Week		Theory
	Lecture Day	Topic (Including Assignment/Test)
	1	Development of operations Research ; characteristics and scope of operations
1 st		Research
	2	Operations Research in Management
	3	Models in operations Research
	4	Model Formulation,
	5	Types of mathematical models
2^{nd}	6	Limitations of operations Research
	7	L.P. models ; simplex method
	8	Algebra of simplex method
	9	Problems and Solutions
3 rd	10	Minimization and Minimization problems
	11	The big M method
	12	Post Optimality analysis
	13	Essence of duality theory
4 th	14	Application of sensitivity analysis
	15	Introduction to model, matrix terminology
	16	Formulation and solution of Transportation model
	17	Least cost method
5th	18	Voyel's Approximation method
	19	Least time transportation problem,
	20	Assignment problems
	21	Introduction to net work logic
6th	22	Numbering of events (Fulkersen Rule)
	23	PERT calculations ; Forward path and back-ward path; Slack
	24	Problems and Solutions
7 th		Ist Minor Test
	25	Probability
8th	26	Comparison with PERT
	27	Critical path, Floats.
	28	Project cost, crashing the net wor
	29	Updating (PERT and CPM
9th	30	Introduction, applications of simulation
,	31	Advantages and limitations of simulation
	32	Technique, generation of random numbers
	33	Time-flow mechanism, simulation languages
10th	34	Steps in decision theory approach
1000	35	Decision Machinery environment
	36	Decision machining under certainty and uncertainty, condition of risk
	37	Decision trees, Minimum enchained criteria,
	38	Definition of arguments models, comparison with transport model
11^{th}	39	Mathematical representation of assignment model
	40	Formulation and solution of argument models
	41	Variation of the argument model, Alternate optimal solutions
12th	42	Introduction, Applications of queuing Theory
1211	43	Waiting time and idle time costs
	43	Single channel queuing theory and multi channel queuing theory with Poisson.
	44	arrivals and exponential services
13 th	45	Numerical on single channel and multi channel queuing theory.
15	-	Theory of games, competitive games, Rules and Terminology in game
	46 47	Theory, Rules for game
	4/	theory- saddle point; dominance
	48	Problems and Solutions
	40	I TOUCHIS AND SULULUIS

OPERATION RESEARCH (ET-406-E)

	49	Mixed strategy (2 x2 games),
15th 50 Mixed strategy (2 x n games or m x 2 games),		Mixed strategy (2 x n games or m x 2 games),
	51	Mixed strategy (3 x3 games), two person zero sum games
52 n-person zero sum games.		n-person zero sum games.